Neurofisiopatologia delle Afferenze

Bongiovanni L.G. Clinica Neurologica di Verona

Quantificazione della sensibilità

Proprietà dei nervi di condurre
l' elettricità risulta scarsamente correleta con la funzione sensitiva

La ricerca di una definizione di
Unità Sensitiva Primaria
sulla base di *soglia recettoriale* ed *area recettiva*ha portato a *due* ipotesi :

Patternisti

la qualità della sensazione dipende:

dalla frequenza

dal pattern temporale

dalla differente combinazione di differenti stimoli

Weddel (1950)

Sinclair (1955)

Nathan (1976)

Wall & Mc Mahon Pain 2: 209 - 229, 1985

Specifisti

la qualità della sensazione dipende dal recettore specifico stimolato

Müller

Blix

Von Frey (1895)

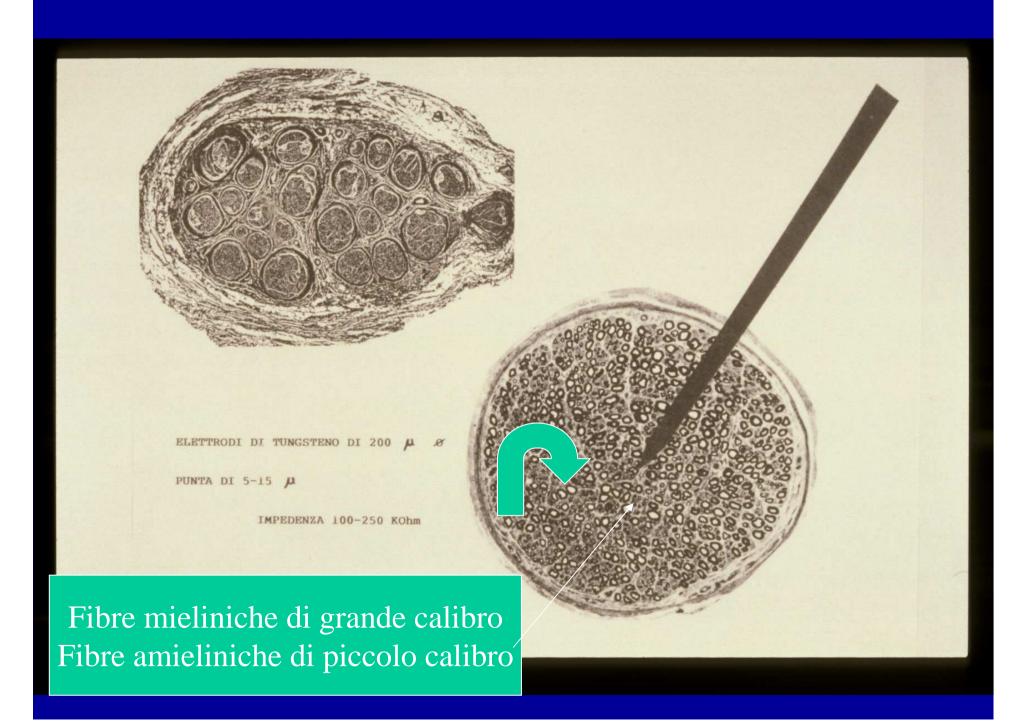
Adrian & Zotterman (1926)

Melzack & Wall Brain 85: 331 - 355, 1962

Sensibilità

Psicofisica = rapporti fra caratteristiche dello stimolo fisico e percezione soggettiva che ne deriva

Microneurografia (A. Vallbo-K. E. Hagbarth, 1968)


Neurofisiologia = proprietà dei recettori studiati nell'animale

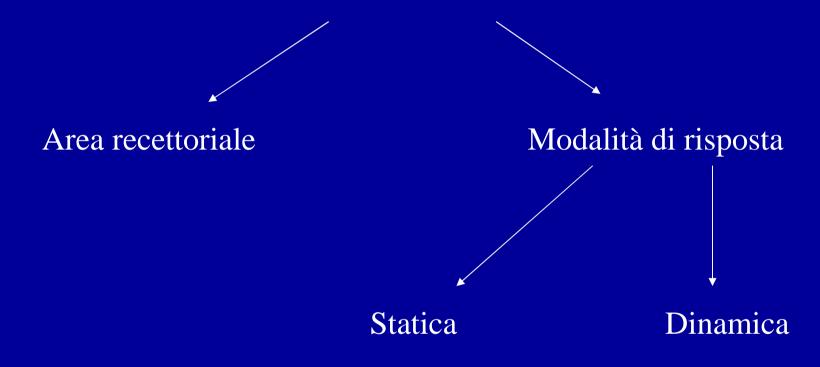
Sensibilità cutanea

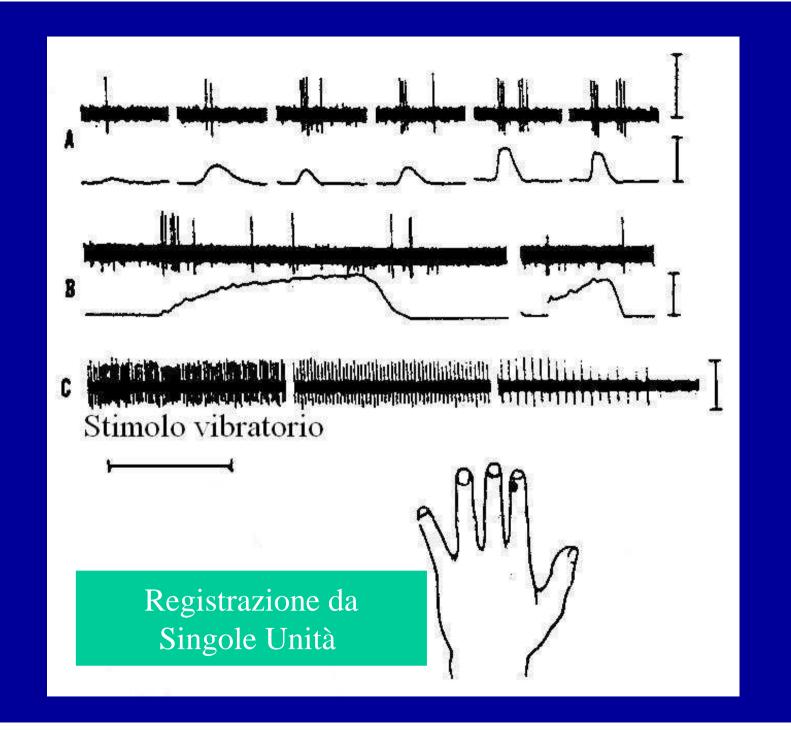
• Recettori Meccanici

• Recettori Termici

• Recettori Nocicettivi

Recettori Tattili

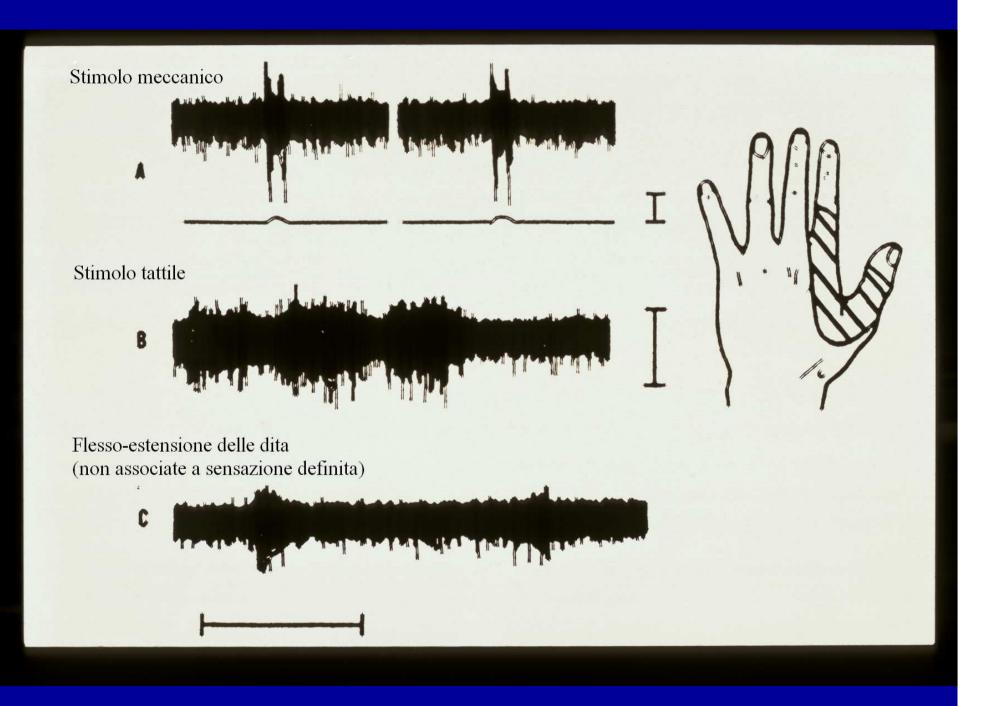

• 17.000 sulla superficie volare della mano


• sensibili alla deformazione cutanea

• fibre afferenti di 7 -16 μ

• VdC: 35 - 70 m / sec

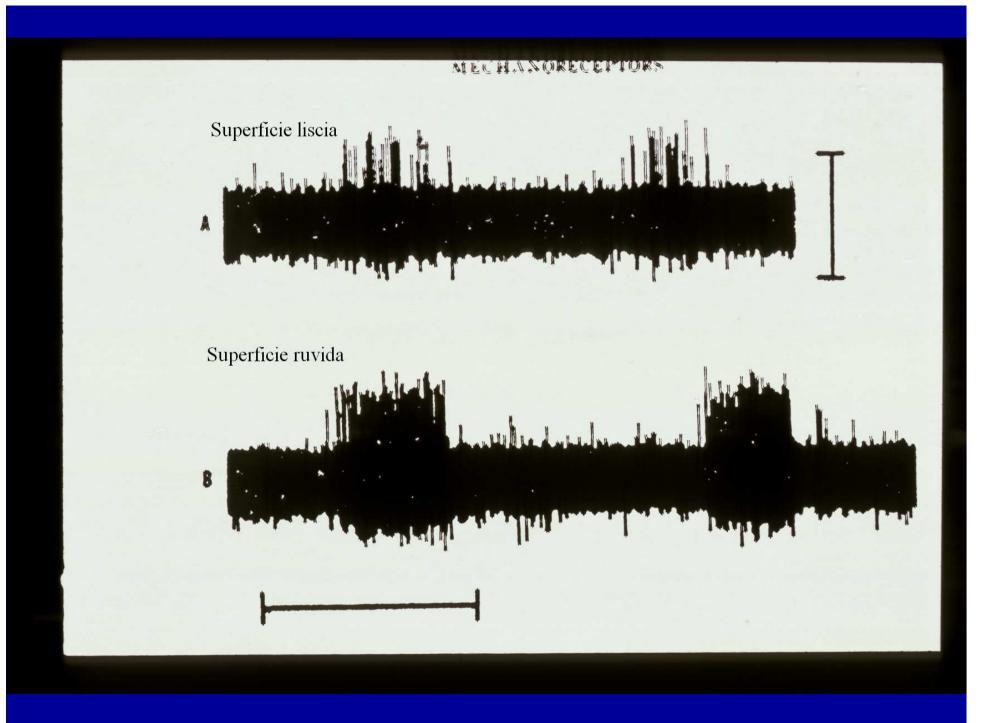
Sensibilità tattile Recettori meccanici

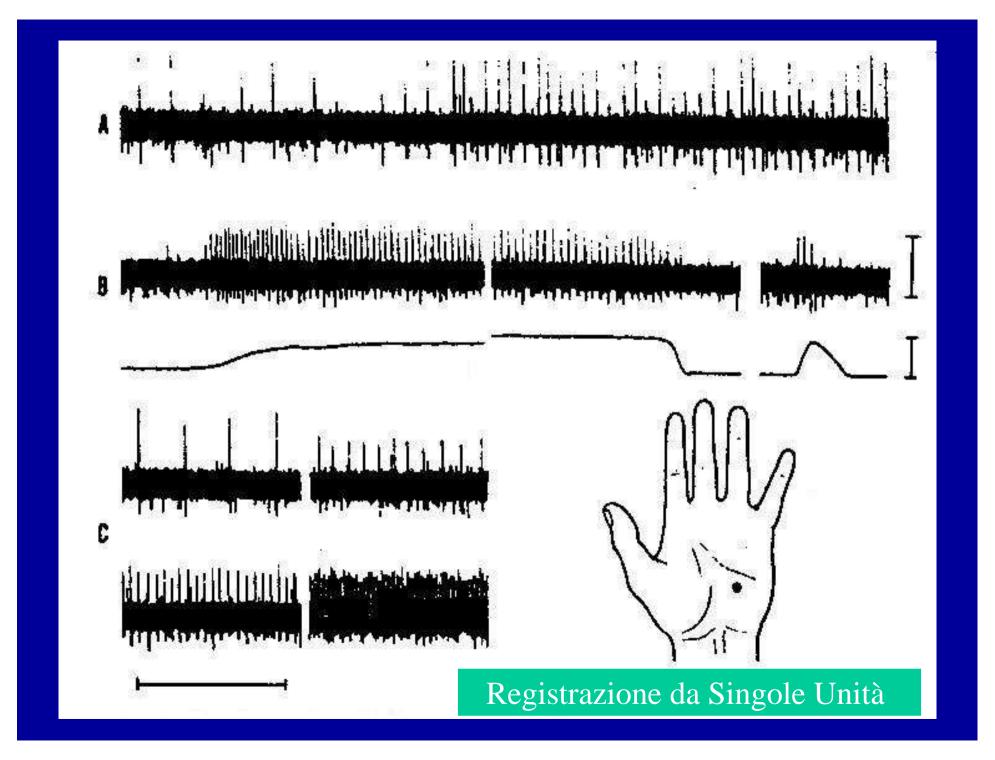

Recettore Meccanico

• Di area ridotta

Dinamico

• Evocabile con pressioni >0.05 Newton


• Evocabile con vibrazioni da 300 a 50 Hz



Recettore Meccanico

- Di area estesa
- Dinamico
- Evocabile sia dalla stimolazione tattile sia dai movimenti di flesso estensione delle dita

• Non sempre associato a distinta sensibilità

Recettori Meccanici

• Di area estesa o ridotta

• Statici

• Evocabili con vibrazioni anche a 3Hz

• Evocabili con pressioni di almeno 5 Newton

Sensibilità tattile Recettori meccanici

Stimolazione — deformazione cutanea

Risposta

55% solo nel momento di applicazione o sottrazione dello stimolo, 45% durante tutto il periodo di deformazione

Caratteristiche

60% superficie ridotta (1-4 mm)
a margini netti
40% superficie di 10-40 mm
a margini sfumati

Registrazione — microneurografia

Recettori Meccanici

• Cute Glabra

recettori FA

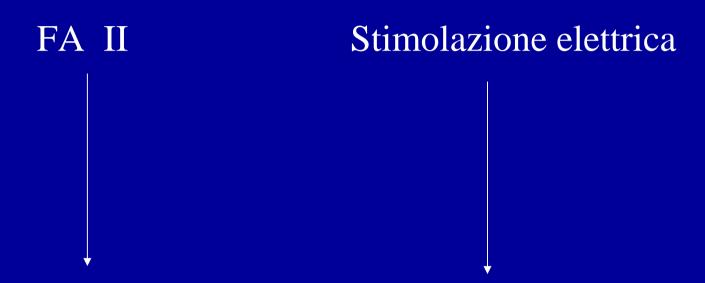
• Cute Provvista di Peli

stimolo minimo capace
di indurre sensazione
di contatto
con terminazioni
annesse ai bulbi
soglia di attivazione dei

Contatto Anticipato!

Recettori del Merkel

SA I


• pressione ortogonale alla cute

 discriminazione spaziale Stimolazione elettrica

• sensazione tattile proporzionale all' intensità di stimolo

• efficace se ripetuta

Recettori del Pacini

- sensazione vibratoria > 80 Hz
- sensazione vibratoria
 sensazione vibratoria

Recettori del Meissner

FA I

discriminazione spaziale

• sensibilità vibratoria < 80 Hz

Stimolazione elettrica

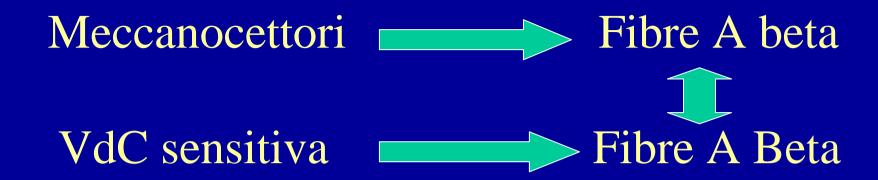
 variando la frequenza di stimolo

Recettori del Ruffini

SA II

Stimolazione elettrica

- sensibili a pressione diretta e laterale, talora unidirezionalmente
- sensibili a trazione e stiramento
- inadatti a discriminare


• nessuna sensazione

Recettori del Ruffini

Essenziali per il controllo delle

forze frizionali

che mantengono salda la presa degli oggetti

Differenti patterns età dipendenti non dati equivalenti Richter & Israel J Med Science 28: 584,1992

Anomalie del SAP surale e soglia vibratoria: dati sovrapponibili *Le Quesne et al. JNNP 53: 558,1990*

Soglia di Sensibilità Tattile e Vibratoria

• La soglia più bassa è registrata nei

Soglia minima fra

corpuscoli del Meissner FA I

20 - 40 Hz

200 - 300 Hz

Corpuscoli del Pacini

Sensibilità Vibratoria

• Diapason = 128 Hz

non ottimale per l'esplorazione

Konietzny & Hensel Pflug Arch Physiologie 368, 39 - 44, 1977

Sensibilità Tattile metodi di esplorazione

• Filamenti di Von Frey

barre con annesso - ad angolo retto - filamento di plastica di differente calibro

la pressione di appoggio deforma lo stesso

differenti sensazioni di contatto

- usati per aree non facilmente accessibili agli stimoli vibratori
- usati anche per il dolore associato a stimolazione di meccanocettori
- limite: accelerazione variabile, pressione non costante

Lindblom & Ochoa In Diseases of the Nervous System WB Saunders Phyladelphia 283 - 298, 1986

Sensibilità Vibratoria metodi di esplorazione

- Vibrametri (accelerometro connesso allo stimolatore)
- pressione d'appoggio costante con cilindro a distanza fissa
- cilindro oscillante con diametro di 12 0.64 mm
- 100 250 Hz

Goldberg & Lindblom JNNP 42,124 - 129, 1979

• Sensotrek Vibraton II

2 cilindri alternativamente vibranti

Gerr & Letz Bj Ind Med 45, 635 - 639, 1988

Studio della sensibilità vibratoria

• Vibrametri (meccanici elettronici)

• 1 Soglia di percezione (VPT)

• 2 Soglia di scomparsa (VDT)

• 3 Soglia = media (VPT+VTD/2) su 3 test

Sensibilità tattile

• Filamenti di Von Frey differenze regionali Lynn& Pearl Pain 3: 353-56, 1983

CASE

soglia minima alla punta delle dita

Dyck et al. Neurology 40:1607 - 615, 1990

- Neuropatia da invecchiamento?
- Riduzione dei corpi del Meissner

Jacobs & Love Brain 108: 897 - 924,1985

 Riduzione della sensibilità vibratoria dopo i 60 anni

La Quesne & Fowler JNNP 53: 558 - 563,1990

Neuropatia Diabetica

• Soglia vibratoria alterata con quella termica Guy et al. Diabetologia 28, 131 - 137, 1987

• Soglia vibratoria piu' sensibile della termica

Dyck et al. Diabetes Care 10,432 - 440, 1987 Vinik et al Muscle 6Nerve 18:574,1995

• Soglia termica più sensibile della vibratoria

Navarro & Kennedy JNNP 54: 60,1991 Chong & Cros Muscle Nerve 29:734,2004

Neuropatia Diabetica

• coinvolgimento di fibre mieliniche di grande calibro (*alterata soglia vibratoria*)

• ed amieliniche (*alterata soglia termica*)

nelle neuropatie associate a dolore

Ziegler et al. JNNP 51,1420 - 24,1988

Neuropatia Tossica

Soglia vibratoria alterata con:

- Cisplatino
- Daugaard et al. Acta Neurol Scand 76: 86:93, 1997

- Antiepilettici (CBZ- PHT) (10 16%)
- Halonen et al. Acta Neurol Scand 72: 307 311,1985

- Solventi (acrilamide)
- Halonen et al. Acta Neurol Scand 73: 561 65, 1986

Soglia Vibratoria alterata

- Sclerosi Multipla
- Halonen et al. Acta Neurol Scand 74: 63 65, 1986

- Neuropatie da intrappolamento
- Borg & Lindblom Acta Neurol Scand 78: 537 41,1988
- Werner & Andary Clinical Neurophysiology 113, 1373 81, 2002

Aumento della soglia meccanica

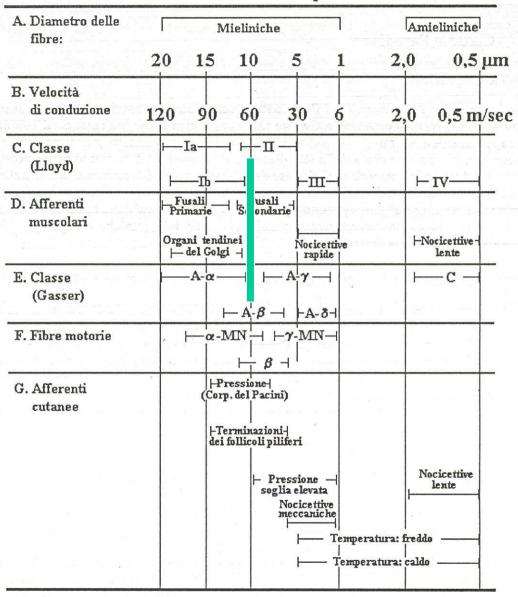
senza prolungamento del tempo di trasduzione del recettore indipendentemente dalla causa della neuropatia

- Neuropatie tossiche e dismetaboliche (deg. dying back)
- Neuropatie traumatiche e compressive (deg. walleriana)
- Neuropatie immuno mediate (alterata barriera emato nervosa a livello del terminale nervoso)

Brown & Snow JNNP 54,768- 74,1991

Mizobuchi et al. Clin neurophysiol 113,310 - 15,2002 Herrman etr al Neurology 13: 879 - 85, 2004

Alla sensibilità cenestesica contribuiscono Afferenze Fusali e Cutanee


• Stimolazione elettrica transcutanea di fibre afferenti di tipo II induce una sensazione illusoria del movimento

Collins et al J. Neurophysiol94: 1699,2005

• Anestesia delle medesime fibre comporta la perdita della capacità di discriminare il movimento

Refshauge et al Exp Brain Res 122: 85, 1998 Refshauge et al J. Physiol. 551: 371,2003

Tabella I. Classificazione delle fibre perifeiche nei mammiferi

E durante la rigenerazione?

- Ridotta sensibilità
- Ridotta frequenza di scarica del recettore
- Fatica recettoriale
- Allargamento dell' area recettoriale

n. Mediano n. Ulnare lesionati al polso:

- 6 mesi per raggiumgere il bersaglio recettoriale
- 2 anni per completare le connessioni

Mackel et al. Brain Res 329, 49 - 69, 1985

Mackel et al Brain ,117 169- 183,1994

Neuropatie coinvolgenti fibre di grande diametro

- Parestesie (neuropatia uremica)
- Dolore (nevralgia posterpetica- deficit niacina e B12, isoniazide)
- Assenza di sintomi (Atassia di Friedreich)

Le parestesie probabilmente derivano da fibre diverse da quelle di piccolo calibro

Esplorazione della sensibilità Quantificazione

• Velocità del cambiamento dello stimolo

Tempo di reazione

• Metodi di misura della soglia psicofisica

Quantificazione della Sensibilità Metodo dei Limiti (MLI)

- Progressivo incremento dello stimolo
- Soglia di percezione
- Ripetizione min per 3 volte
- Media dei valori Soglia
- Vantaggi: rapidità evidenza disturbi di sommazione temporale (aumento progressivo della soglia nelle lesioni centrali). Utile nello studio della pallestesica.
- Svantaggi: Tempo di Reazione max nelle fibre piu' lente dipendente dalla vigilanza costante sovrastima della soglia sensitiva

Quantificazione della Sensibilità Metodo dei Livelli (MLE)

• Programmi automatici con stimoli di intensità e durate prestabilite

Vantaggi: indipendenti da Tempi di Reazione
 utili negli studi longitudinali
 utili nella sensibilità termica e nocicettiva

• Svantaggi: Tempi Lunghi

Yarnitsky Muscle & Nerve 20: 198,1997

Chong & Cros Muscle Nerve 29: 734,2004

Come ottenere le risposte del soggetto con il Metodo dei Livelli?

• Metodo "Yes – No "

Metodo della scelta obbligata

Temporale: all'interno di un determinato periodo

Spaziale: almeno due stimolatori in aree omologhe o diverse

Levy et al JNNP 52: 1072,1989 Yarnitsky et al J Neurol Sci 125: 186,1994

Neuropatia Diabetica

In pazienti di nuova diagnosi con diabete tipo I

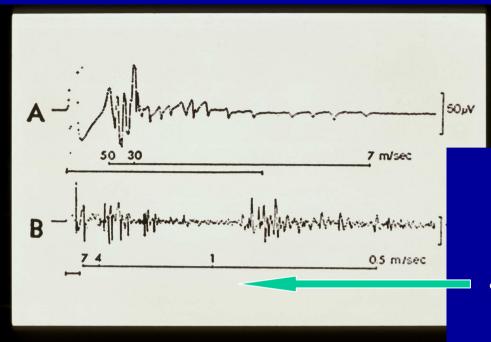
- Soglia termica per il freddo alterata nel 27.5%
- Soglia termica per il caldo alterata nel 22.5%
- Soglia vibratoria alterata nel 7.5 %
- Alterazioni della sensibilità termica più pronunciate nelle neuropatie con associata componente algica

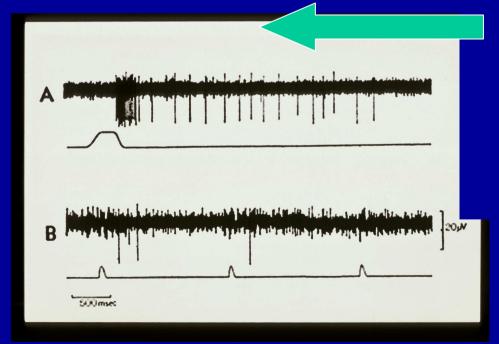
Ziegler et al JNNP 51: 1420,1988

Ziegler et al Pain 34: 1,1988

Chong & Cros Muscle Nerve 29: 734,2004

Johansson & Vallbo J Physiol 286:283,1979


SPECIFISTI



microneurografia

Ochoa & Vallbo J Physiol 342:643,1983

Comportamento dei Nocicettori

- Lenta Velocità di Conduzione : A delta C
- Scarica postuma
- Adattamento allo stimolo costante

Fatica

- Polimodalità di risposta
- Sovrapposizione di aree complesse (max 1 cmq)

RECETTORI TERMICI

NON CAPSULATI

FREDDO	CALDO	SCARICHE
TERMINAZIONI LIBERE	TERMINAZIONI LIBERE	DEI RECETTORI
MIELINICHE	AMIELINICHE	PROPORZIONALI
DI PICCOLO CALIBRO	DI PICCOLO CALIBRO	ALLA GRANDEZZA
1-4 μm	0,4-2,4 μm	ED ALLA VELOCITÀ DELLE
RISPOSTE MASSIMALI	RISPOSTE MASSIMALI	
		TERMICHE
25-28 °C	40-41 °C	(VARIAZIONI
		DINAMICHE)

RECETTORI DEL DOLORE

NON CAPSULATI

	FIBRE MIELINICHE DI PICCOLO CALIBRO 1-4 µm FIBRE AMIELINICHE DI PICCOLO CALIBRO 0,4-2,4 µm	PROIEZIONI NELLA LAMINA I DELLE CORNA POSTERIORI PROIEZIONI NELLA LAMINA II DELLE CORNA POSTERIORI	UNIMODALITÀ REATTIVE A STIMOLI MECCANICI POLIMODALITÀ REATTIVE A STIMOLI MECCANICI TERMICI CHIMICI	DOLORE PUNTORIO LOCALIZZATO DI BREVE DURATA DOLORE SORDO MAL LOCALIZZATO A LENTA INSORGENZA E
L			CHIMICI	E ESTINZIONE

Blocco Anestetico

- Fibre C dolore diffuso e sensibilità per il caldo
- Fibre A delta dolore localizzato e sensibilità per il freddo
- Fibre A beta ______ sensibilità tattile

Blocco Compressivo

Principio di Peltier: corrente attraverso una giunzione bimetallica di metalli diversi

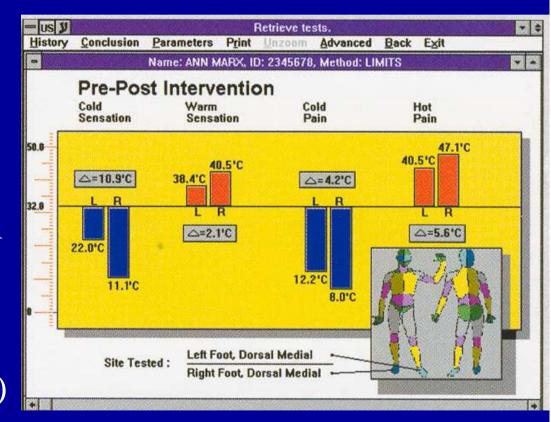
riscaldamento su un lato – raffreddamento sull'altro Fenomeno dipendente dalla polarità della corrente

Kenshalo et al Perception and Psycophysic 3: 81,1968

MarStock stimulator

Marburg

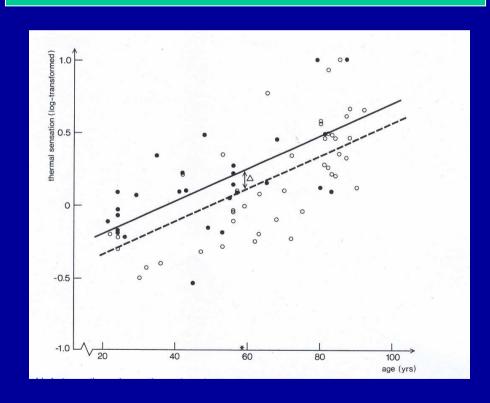
Stockholm


Fruhstorfer & Lindblom JNNP 39:1071,1976

Studio della sensibilità termica mediante stimolatori a semiconduttore

• La superficie di contatto definisce il

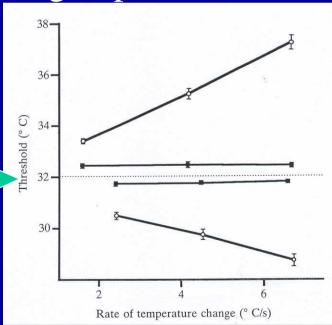
n°di Unità recettoriali


(reclutamento spaziale)

Sensibilità termica ed Età

- Aumento della Soglia
 Termica per il caldo e per il freddo
- La Soglia per il freddo risulta più bassa rispetto a quella per il caldo
- Le soglie risultano più basse nelle femmine

Doeland et al Muscle & Nerve 12: 742, 1989


Sensibilità termica

Yarnitsky & Ochoa Brain 114, 1819, 1991

• Le soglie ottenute con il *Metodo dei Limiti* risultano sempre più alte rispetto a quelle ottenute con il *Metodo dei Livelli*

• Le differenze risultano più evidenti per il Caldo • Soglia per il caldo

• Soglia per il freddo

Regressione di funzioni recettoriali con l'età dipendono da:

- Ridotto apporto ematico nei nervi periferici e nel midollo
- Riduzione delle fibre mieliniche e irregolarità nella lunghezza internodale
- Modificazioni delle proprietà della cute
- Riduzione dei recettori

Regressione di funzioni recettoriali con l'età: Sensibilità Tattile

- Analisi su soggetti fra 8 e 86 anni
- Costante incremento della soglia della acuità spaziale del tatto (1% per anno fra 20 e 80 anni)
- A livello prossimale il deterioramento si verifica più lentamente che non distalmente
- Riduzione dei corpuscoli del Meissner

Stevens & Patterson Somatosens Mot Res 12: 29,1995

Regressione di funzioni recettoriali con l'età: Sensibilità Termica

- Modifiche con l'età in varie regioni del corpo
- La regione facciale risulta la più sensibile
- Tutte le regioni del corpo risultano più sensibili al freddo che non al caldo
- Più sensibile risulta una regione al freddo, più sensibile risulta pure al caldo
- I cambiamenti maggiori si verificano distalmente (max ai piedi)

Stevens & Choo Somatosen Mot Res 15: 13,1998

Quantificazione della Nocicezione

- Stimoli non producenti lesioni in grado di mantenere e prolungare la scarica nocicettiva con sensibilizzazione
- Stimoli Meccanici (pinzettamento pressione)
- Termici $(6-45 \, \mathrm{C}^{\circ})$
- Laser (A delta e C)
- Skin Axon Reflex Flare Response

Limiti: variabili soggettive
difficoltà di stimolo costante
minore riproducibilitò rispetto ad altre metodiche

Sintomi Positivi Neuropatici

- Sensazioni spontanee in assenza di stimoli (parestesie)
- Sensazioni alterate (disestesie)
- Sensazioni esagerate (*iperestesia*)

Generazione di impulsi ectopici a livello

- periferico
- gangliare dorsale
- centrale

Neuropatie coinvolgenti fibre di grande diametro

- Parestesie (neuropatia uremica)
- Dolore (nevralgia posterpetica- deficit niacina e B12, isoniazide)
- Assenza di sintomi (Atassia di Friedreich)

Le parestesie probabilmente derivano da fibre diverse da quelle di piccolo calibro

Neuropatie da coinvolgimento delle piccole fibre

- Dolore (m. di Fabry, amiloidosi)
- Insensibilità al dolore

Le neuropatie caratterizzate da un disturbo della nocicezione all' esordio

- o coinvolgono le piccole fibre
- o non sono selettive