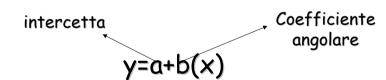
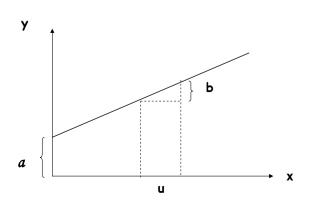
REGRESSIONE

Università degli Studi di Verona

Sezione di Epidemiologia & Statistica Medica

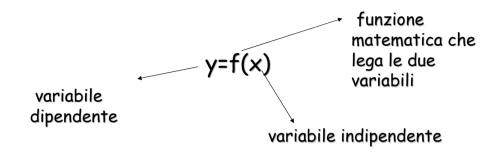
Ampiamente usata in ambito biomedico





REGRESSIONE

permette di esprimere la relazione tra due variabili con un modello funzionale



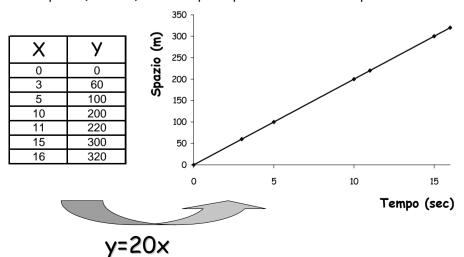
descrittivo SCOPO predittivo

Esempio di relazione lineare

Si abbiano due variabili X e Y.

X è il tempo (in secondi) a cui viene osservato un corpo.

Y è lo spazio (in metri) che il corpo ha percorso da un certo punto.



- ◆ La variabilità di Y è completamente spiegata dalla retta
- ◆ La retta descrive perfettamente i dati e individua la "legge" che li ha prodotti (legge del moto uniforme)
- ◆ Il coefficiente angolare (b=20) rappresenta l'incremento nello spazio per incremento unitario nel tempo (la velocità) ed è misurato come metri al secondo

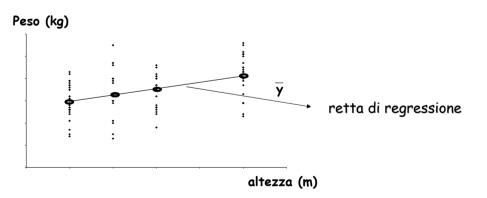
◆ Tale modello è completamente deterministico:

noti i valori di x, si possono predire esattamente i valori di Y

◆ In biologia e medicina, la relazione tra variabili non è sempre perfettamente lineare

Il modello lineare permette di approssimare la descrizione del fenomeno

Esempio: relazione tra peso e altezza



Per ogni altezza esiste un range di pesi

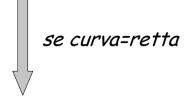
→

←

Errore di misura

In media il peso cresce linearmente con l'altezza

■ Il luogo geometrico delle medie di Y per dati valori di X è detto CURVA DI REGRESSIONE DI Y SU X



RETTA DI REGRESSIONE DI y SU x

Esercizio

Nella tabella seguente sono riportati i dati relativi ad altezza e FEV1 (forced expiratory volume in 1 second) per 30 soggetti (dati ECRHS).

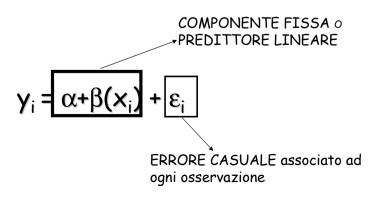
altezza (m)	FEV1 (I)
X	Υ
1.79	4.14
1.8	4.52
1.72	3.64
1.69	4.12
1.72	3.67
1.84	3.58
1.6	2.72
1.7	3.04
1.83	4.16
1.58	2.08
1.74	4.04
1.74	4.22
1.67	3.82
1.71	3.49
1.67	2.96
1.58	2.77

altezza (m)	FEV1 (I)
Х	Υ
1.71	4.32
1.67	3.03
1.67	4.12
1.73	4.4
1.81	4.21
1.81	4.23
1.8	3.52
1.69	3.81
1.7	2.66
1.74	4.21
1.77	4.1
1.8	2.12
1.6	2.64
1.63	2.96
1.59	2.75

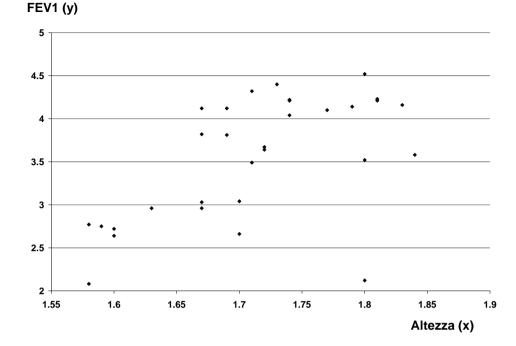
2. Assumeremo che nella popolazione il legame tra altezza (X) e FEV1 (Y) possa essere espressa da:

$$E(y)=\alpha+\beta(x)$$

L'osservazione di Y nell'i-mo individuo avrà quindi la seguente struttura:



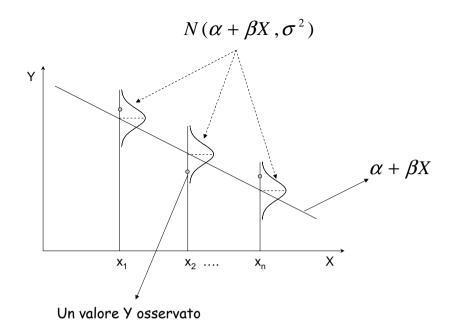
1. Rappresentiamo i dati in un diagramma a dispersione di punti



Dove:

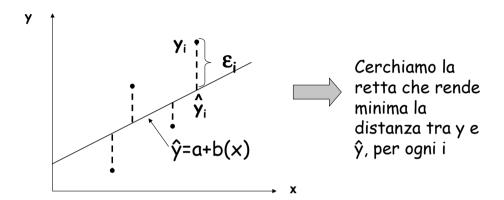
- ·Y è la variabile di risposta (o <u>dipendente</u>)
- ${}^{ullet} \alpha + \beta$ sono parametri ignoti da <u>stimare</u> sulla base dei dati disponibili
- •X è la variabili esplicativa (indipendente)
- $\cdot \varepsilon_1$ (errore casuale) ~N(0, σ^2)

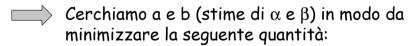
•Y, cioè il FEV1, dipende dall'altezza dell'individuo (X, parte sistematica) e da altre caratteristiche individuali (\mathbf{E}_{1} , parte probabilistica)



3. A questo punto, come scegliamo la retta che meglio si adatta ai nostri dati? \implies Come stimiamo α e β ?

STIMA DEI PARAMETRI CON IL METODO DEI MINIMI QUADRATI





$$\sum_{i} \varepsilon_i^2 = \sum_{i} (y_i - \alpha - \beta x_i)^2 = \sum_{i} (y_i - \hat{y}_i)^2$$

$$b = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2} = \frac{\sum_{i} x_i y_i - \left[\left(\sum_{i} x_i\right)\right] \left(\sum_{i} y_i\right) / n}{\sum_{i} x_i^2 - \left(\sum_{i} x_i\right)^2 / n} = \frac{codev.}{dev} = \frac{Sxy}{Sxx}$$

$$b = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2} = \frac{Sxy}{Sxx}$$

$$a = \overline{y} - b\overline{x}$$

Stima dei parametri della retta di regressione

Si noti che il punto di coordinate $(\overline{x}, \overline{y})$ appartiene alla retta di regressione. Infatti:

$$\hat{y} = \overline{y} - b\overline{x} + bx \Rightarrow \hat{y} = \overline{y} + b(x - \overline{x})$$

E per
$$x = \overline{x} \Rightarrow \hat{y} = \overline{y}$$

Quindi nell'esempio:

$$\bar{x}$$
=1.71, \bar{y} =3.55

Sxx=0.1748, Syy=15.1098, Sxy=0.9562

b=Sxy/Sxx=0.9562/0.1748=5.47

 $a=y-b=3.55-5.47\cdot1.71=-5.8$

Varianza delle osservazioni, Y, intorno al modello di regressione (varianza d'errore)

$$s_e^2 = \frac{\sum_i (y_i - \hat{y})^2}{(n-2)} =$$

$$g.l=n^{\circ}osservazioni-n^{\circ} parametri$$

$$s_e^2 = (S_{yy} - \frac{S_{xy}^2}{S_{xx}})/(n-2)$$

FEV1 (y) 3.55 $\hat{y}=-5.8+5.47x$ 2.5 1.71 1.55 1.6 1.65 1.75 1.8 1.85 1.9 Altezza (x) $(\overline{x}, \overline{y})$ appartengono alla retta di regressione

Dimostrazione:

$$\sum_{i} (y_{i} - \hat{y})^{2} = \sum_{i} (y_{i} - a - bx_{i})^{2}$$

$$= \sum_{i} (y_{i} - \overline{y} + b\overline{x} - bx_{i})^{2} = \sum_{i} \{(y_{i} - \overline{y}) - b(x_{i} - \overline{x})\}^{2} =$$

$$= \sum_{i} (y_{i} - \overline{y})^{2} + b^{2} \sum_{i} (x_{i} - \overline{x})^{2} - 2b \sum_{i} (y_{i} - \overline{y})(x_{i} - \overline{x})$$

•(b=
$$S_{xy}/S_{xx}$$
)
$$= S_{yy} + \frac{S_{xy}^{2}}{S^{2}} S_{xx} - 2 \frac{S_{xy}}{S} S_{xy} = S_{yy} - \frac{S_{xy}^{2}}{S}$$

6. Errore standard di b e test per il modello di regressione

Si può dimostrare che:
$$ES(b) = \frac{s_e}{\sqrt{\sum (x_i - \overline{x})^2}} = \frac{s_e}{\sqrt{Sxx}}$$

► La validità del modello viene valutata mediante il seguente sistema d'ipotesi

$$\begin{cases} H_0: \beta_0 = \beta = 0 \\ H_1: \beta \neq 0 \end{cases} t = \frac{b - \beta_0}{ES(b)} - t_{n-2}$$

intervallo di confidenza
$$b\pm t_{n-2, \alpha/2} \cdot ES(b)$$
 (95%)

Nell'esempio;

$$s_e^2 = \frac{\sum_i (y_i - \hat{y})^2}{n - 2} = 0.34$$
 g.l.=31-2=29

$$ES(b) = \frac{s_e}{\sqrt{\sum (x_i - \bar{x})^2}} = \frac{\sqrt{0.34}}{\sqrt{0.17}} = 1.396$$

$$t = \frac{b - \beta_0}{ES(b)} = \frac{5.47 - 0}{1.396} = 3.92$$

intervallo di confidenza (95%)

$$b \pm t_{0.025,29} \cdot ES(b) \Rightarrow 5.47 \pm 2.364 \cdot 1.396$$

 5.47 ± 3.30
 $(2.17;8.77)$