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LESSON 2 INDEX

Descriptive Statistics And Graphics

Chi-Square Test & Fisher Exact Test



Descriptive statistics are used to describe the basic features of the
data in a study. They provide simple summaries about the sample and
the measures. Together with simple graphics analysis, they form the
basis of virtually every quantitative analysis of data.



In quantitative research, after collecting data, the first step of
statistical analysis is to describe characteristics of the responses, such as
the average of one variable (e.g., age), or the relation between two
variables (e.g., age and creativity).

The next step is inferential statistics, which help you decide
whether your data confirms or refutes your hypothesis and whether it is
generalizable to a larger population.



Types Of Descriptive Statistics 

There are 3 main types of descriptive statistics:

The distribution concerns the frequency of each value.

The central tendency concerns the averages of the values.

The variability or dispersion concerns how spread out the values are.



The distribution is a summary of the frequency of individual
values or ranges of values for a variable. The simplest distribution
would list every value of a variable and the number of persons who had
each value.

For instance, a typical way to describe the distribution of college
students is by year in college, listing the number or percent of students
at each of the four years.



Or, we describe gender by listing the number or percent of males
and females.

In these cases, the variable has few enough values that we can list
each one and summarize how many sample cases had the value.



One of the most common ways to describe a single variable is
with a frequency distribution. Depending on the particular variable, all
of the data values may be represented, or you may group the values into
categories first (e.g., with age, price, or temperature variables, it would
usually not be sensible to determine the frequencies for each value.

Rather, the value are grouped into ranges and the frequencies
determined.).



Frequency distributions can be depicted in two ways, as a table or
as a graph. The table above shows an age frequency distribution with
five categories of age ranges defined.

The same frequency distribution can be depicted in a graph. This
type of graph is often referred to as a histogram or bar chart.



Measures Of Central Tendency

The central tendency of a distribution is an estimate of the
“center” of a distribution of values. There are three major types of
estimates of central tendency:

Mean

Median

Mode



The Mean is probably the most commonly used method of
describing central tendency. To compute the mean all you do is add up
all the values and divide by the number of values.



ഥX =
60 + 72 + 57 + 90 + 95 + 72

6

OR;



The Median is the score found at the exact middle of the set of
values. One way to compute the median is to list all scores in numerical
order, and then locate the score in the center of the sample.

To find the median, first order your data. Then calculate the
middle position based on n, the number of values in your data set.

If n is an odd number, the median lies at the position (n + 1) / 2.

If n is an even number, the median is the mean of the values at
positions n / 2 and (n / 2) + 1.

https://www.scribbr.com/statistics/median/
https://www.scribbr.com/statistics/mean/


57   60   72   72  90   95

(6/2)+1= 4

57 60   72   72 90   95



The mode of a data set is the most frequently occurring value. A
data set can often have no mode, one mode or more than one mode – it
all depends on how many different values repeat most frequently.

Your data can be: without any mode, unimodal, with one mode,
bimodal, with two modes, or multimodal, with four or more modes.



To find the mode, follow these two steps:

If your data takes the form of numerical values, order the values from
low to high. If it takes the form of categories or groupings, sort the
values by group, in any order.

Identify the value or values that occur most frequently.



57 60   72   72  90   95

Mode:72



When to use the mode?

The level of measurement of your variables determines when
you should use the mode.

The mode works best with categorical data. It is the only measure
of central tendency for nominal variables, where it can reflect the most
commonly found characteristic (e.g., demographic information).

The mode is also useful with ordinal variables – for example, to
reflect the most popular answer on a ranked scale (e.g., level of
agreement).

https://www.scribbr.com/statistics/levels-of-measurement/
https://www.scribbr.com/statistics/nominal-data/
https://www.scribbr.com/statistics/ordinal-data/


Measures Of Variability 

Variability describes how far apart data points lie from each other
and from the center of a distribution. Along with measures of central
tendency, measures of variability give you descriptive statistics that
summarize your data.



Variability is also referred to as spread, scatter or dispersion. It is 
most commonly measured with the following: 

Range: the difference between the highest and lowest values

Interquartile Range: the range of the middle half of a distribution

Standard Deviation: average distance from the mean 

Variance: average of squared distances from the mean



Range

The range is simply the highest value minus the lowest value. In
our example distribution, the high value is 36 and the low is 15 , so the
range is 36 - 15 = 21 .

The range tells you the spread of your data from the lowest to the
highest value in the distribution. It’s the easiest measure of variability to
calculate.



Interquartile Range 

The interquartile range gives you the spread of the middle of your
distribution. For any distribution that’s ordered from low to high, the
interquartile range contains half of the values. While the first quartile
(Q1) contains the first 25% of values, the fourth quartile (Q4) contains
the last 25% of values.







Standard Deviation

The Standard Deviation is the average amount of variability in
your dataset. It tells you, on average, how far each score lies from the
mean. The larger the standard deviation, the more variable the data set
is.





Variance

The Variance is the square of the standard deviation. This means
that the units of variance are much larger than those of a typical value of
a data set.





Variance reflects the degree of spread in the data set. The more
spread the data, the larger the variance is in relation to the mean.

While it’s harder to interpret the variance number intuitively, it’s
important to calculate variance for comparing different data sets in
statistical tests like ANOVAs.





What’s The Best Measure Of Variability?

The best measure of variability depends on your level of
measurement and distribution.

Level of measurement

For data measured at an ordinal level, the range and interquartile
range are the only appropriate measures of variability.

For more complex interval and ratio levels, the standard deviation and
variance are also applicable.

https://www.scribbr.com/statistics/levels-of-measurement/
https://www.scribbr.com/statistics/ordinal-data/
https://www.scribbr.com/statistics/interval-data/
https://www.scribbr.com/statistics/ratio-data/


For normal distributions, all measures can be used. The standard
deviation and variance are preferred because they take your whole data
set into account, but this also means that they are easily influenced by
outliers.

For skewed distributions or data sets with outliers, the
interquartile range is the best measure. It’s least affected by extreme
values because it focuses on the spread in the middle of the data set.



SUMMARY STATISTICS FOR A SINGLE GROUP

Before going into the actual statistical modelling and analysis of a
data set, it is often useful to make some simple characterization of the
data in terms of summary statistics and graphics.



It is easy to calculate simple summary statistics with R. Here is how to

calculate the mean, standard deviation, variance, and median.



If there are missing values in data, things become a bit more
complicated. For illustration, we use the following example: The data
set juul contains variables from an investigation performed by Anders
Juul (Rigshospitalet, Department for Growth and Reproduction)
concerning serum IGF-I (insulin-like growth factor) in a group of
healthy humans, primarily school children.



The data set is contained in the ISwR package and contains a
number of variables, of which we only use igf1 (serum IGF-I) for now,
but later in the chapter we also use tanner (Tanner stage of puberty, a
classification into five groups, based on appearance of primary and
secondary sexual characteristics), sex, and menarche (indicating
whether or not a girl has had her first period).



Attempting to calculate the mean of igf1 reveals a problem.

R will not skip missing values unless explicitly requested to do
so.



The mean of a vector with an unknown value is unknown.
However, you can give the na.rm argument (not available, remove) to
request that missing values be removed:



There is one slightly annoying exception: The length function will
not understand na.rm, so we cannot use it to count the number of
nonmissing measurements of igf1. However, WE can use

> sum(!is.na(igf1)) 

[1] 1018



The above construction uses the fact that if logical values are used
in arithmetic, then TRUE is converted to 1 and FALSE to 0.

A nice summary display of a numeric variable is obtained from
the summary function:



In fact, it is possible to summarize an entire data frame with



Notice that this data set has menarche, sex, and tanner coded as
numeric variables even though they are clearly categorical. This can be
mended as follows:





Notice how the display changes for the factor variables.
Note also that juul was detached and reattached after the
modification.

This is because modifying a data frame does not affect
any attached version.

It was not strictly necessary to do it here, because summary
works directly on the data frame whether attached or not.



In the above the variables sex, menarche, and tanner were
converted to factors with suitable level names (in the raw data these are
represented using numeric codes).

The syntax x <- factor(x,labels=...) is a short form for x <-
factor(x) followed by levels(x) <- ....

The converted variables were put back into the data frame juul
replacing the original sex, tanner, and menarche variables. We might
also have used the transform function:





Summary Statistics By Groups

When dealing with grouped data, you will often want to have
various summary statistics computed within groups. For example, a
table of means and standard deviations.

To this end you can use tapply. Here is an example concerning
the folate concentration in red blood cells according to three types of
ventilation during anesthesia (Altman, 1991, p. 208).

We return to this example, which also contains the explanation of
the category names.





The tapply call takes the folate variable, splits it according to
ventilation, and computes the mean for each group.

In the same way, standard deviations and number of observations
in the groups can be computed.





Try something like this for a nicer display:



For the juul data we might want the mean igf1 by tanner group,
but of course we run into the problem of missing values again:



We need to get tapply to pass na.rm=T as a parameter to mean to
make it exclude the missing values.

This is achieved simply by passing it as an additional argument to
tapply.



CONTINGENCY TABLES 

Categorical data are usually described in the form of tables. This
section outlines how you can create tables from your data and calculate
relative frequencies.

We deal mainly with two-way tables. In the first example we
enter a table directly, as is required for tables taken from a book or a
journal article. A two-way table needs to be in a matrix object.



Altman (1991, p. 242) contains an example on caffeine
consumption by marital status among women giving birth. That table
may be input as follows:



The matrix function needs an argument containing the table
values as a single vector and also the number of rows in the argument
nrow. By default, the values are entered columnwise; if rowwise entry
is desired, then you need to specify byrow=T.

You might also give the number of columns instead of rows using
ncol. If exactly one of ncol and nrow is given, R will compute the other
one so that it fits the number of values.

If both ncol and nrow are given and it does not fit the number of
values, the values will be “recycled”, which in some (other!)
circumstances can be useful.



To get readable printouts, you can add row and column names to 
the matrices.



In practice, the more frequent case is that you have a database of
variables for each person in a data set. In that case, you should do the
tabulation with table, xtabs, or ftable.

These functions will generally work for tabulating numeric
vectors as well as factor variables, but the latter will have their levels
used for row and column names automatically.

Hence, it is recommended to convert numerically coded
categorical data into factors. The table function is the oldest and most
basic of the three. The other two offer formula-based interfaces and
better printing of multiway tables.



Here we look at some other variables in that juul data set, namely
sex and menarche; the latter indicates whether or not a girl has had her
first period. We can generate some simple tables as follows:





Of course, the table of menarche versus sex is just a check on
internal consistency of the data.

The table of menarche versus Tanner stage of puberty is more
interesting. There are also tables with more than two sides, but not many
simple statistical functions use them.

Briefly, to tabulate such data just write, for example,
table(factor1,factor2,factor3). To input a table of cell counts, use the
array function (an analog of matrix).



Like any matrix, a table can be transposed with the t function:



Marginal Tables And Relative Frequency

It is often desired to compute marginal tables, that is, the sums of
the counts along one or the other dimension of a table. Due to missing
values, this might not coincide with just tabulating a single factor.

This is done fairly easily using the apply function, but there is
also a simplified version called margin.table, described below.



First we need to generate the table itself:

tanner.sex is an arbitrarily chosen variable name, which is
used for the crosstable of tanner and sex.



Then we compute the marginal tables: 



The second argument to margin.table is the number of the
marginal index: 1 and 2 give row and column totals, respectively.



Relative frequencies in a table are generally expressed as
proportions of the row or column totals. Tables of relative frequencies
can be constructed using prop.table, as follows:

Note that the rows (1st index) sum to 1. If a table of percentages is
desired, just multiply the entire table by 100.



Graphical Display Of Tables

For presentation purposes, it may be desirable to display a graph 
rather than a table of counts or percentages. In this section the main 
methods for this are described.



Bar Plots

Bar plots are made using barplot. This function takes an
argument, which can be a vector or a matrix. The simplest variant goes
as follows (Figure 3.9):





Without the col="white" argument, the plot comes out in colour,
but this is not suitable for a black and white book illustration.

If the argument is a matrix, then barplot creates by default a
“stacked bar plot”, where the columns are partitioned according to the
contributions from different rows of the table.

If you want to place the row contributions beside each other
instead, you can use the argument beside=T.



A series of variants is found in Figure 3.10, which is constructed
as follows:





For instance, multiples of 0.5 MJ are chosen in the following
example using the energy data introduced in energy dataset on the 24-
hour energy expenditure for two groups of women: In this example
some further techniques of general use are illustrated. The end result is
seen in Figure, but first we must fetch the data:





Parallel Boxplots

You might want a set of boxplots from several groups in the same
frame. boxplot can handle this, both when data are given in the form of
separate vectors from each group and when data are in one long vector
and a parallel vector or factor defines the grouping.







The bottom plot has been made using the complete expend vector
and the grouping variable fstature. Notation of the type y~x should be
read “y described using x”. This is the first example we see of a model
formula.



Chi-Square Test & Fisher Exact Test

A chi-square test for independence compares two variables in
a contingency table to see if they are related. In a more general sense, it
tests to see whether distributions of categorical variables differ from
each another.

For the analysis of tables with more than two classes on both
sides, you can use chisq.test or fisher.test although you should note that
the latter can be very computationally demanding if the cell counts are
large and there are more than two rows or columns.

https://www.statisticshowto.com/probability-and-statistics/types-of-variables/
https://www.statisticshowto.com/what-is-a-contingency-table/
https://www.statisticshowto.com/what-is-a-categorical-variable/


We have already seen chisq.test in a simple example, but with 
larger tables, some additional features are of interest. An r × c table 
looks like this:



Such a table can arise from several different sampling plans, and
the notion of “no relation between rows and columns” is
correspondingly different.

The total in each row might be fixed in advance and you would
be interested in testing whether the distribution over columns is the
same for each row, or vice versa if the column totals were fixed.



It might also be the case that only the total number is chosen and
the individuals are grouped randomly according to the row and column
criteria.

In the latter case you would be interested in testing the hypothesis
of statistical independence, that the probability of an individual falling
into the ijth cell is the product pi·p·j of the marginal probabilities.



However, the analysis of the table turns out to be the same in all 
cases. If there is no relation between rows and columns, then you 
would expect to have the following cell values:



This can be interpreted as distributing each row total according to
the proportions in each column (or vice versa) or as distributing the
grand total according to the products of the row and column
proportions. The test statistic

has an approximate χ2 distribution with (r − 1) × (c − 1) degrees of

freedom.



We consider the table with caffeine consumption and marital 
status from.




