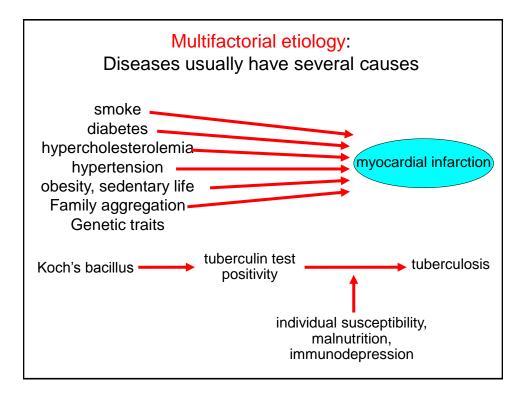
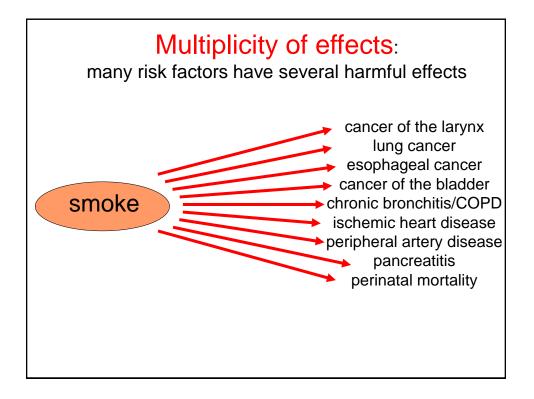
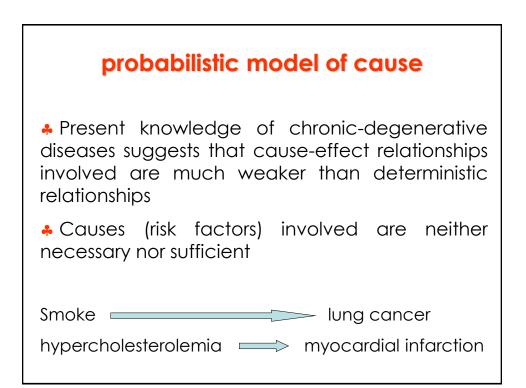

CAUSAL RELATIONSHIP IN EPIDEMOLOGY


Prof. Giuseppe Verlato Unit of Epidemiology & Medical Statistics Dept. of Diagnostics & Public Health University of Verona



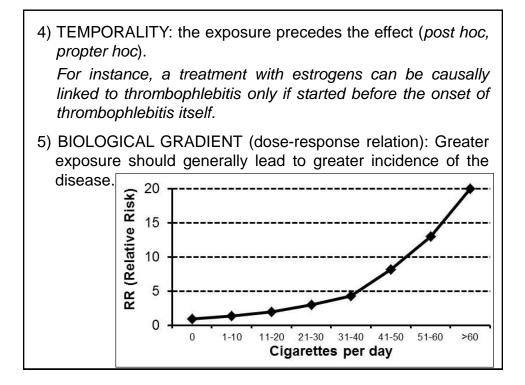
EXPERIMENT	PLANNED OBSERVATION
Researchers actively modify the course	Researchers just observe the course of
of events	events, without attempting to modify it
Only positive perturbations can be	Also etiologic factors with deleterious
applied:	health effects can be studied:
1) Preventive interventions, such as	1) wrong lifestyle (smoking, excessive
adding fluorine to tap water, or	alcohol intake)
iodine to salt	2) environmental situation (Chernobyl)
2) Therapeutic measures (early throm-	
bolysis in myocardial infarction,	
segmental vs total mastectomy)	
3) Rehabilitation interventions	
RANDOMIZATION	SELF-SELECTION
Participants are randomly assigned to	Potential confounders are not
different treatments	eliminated. For instance, it could be
. ↓	hypothesized that:
Other risk factors (potential	Craving for smoking
confounders) are balanced among	Unknown genes Increased risk of
groups	lung cancer



n	necessar	y cause	
	diseased	healthy	J
exposed	a	b	
unexposed		d	unexposed are all healthy
mee	ctious disease	es (TBC, inf	luenza)
	sufficien	· · · ·	iuenza)
		· · · ·	
	sufficien	it cause	all exposed are

neces	sary	and	sufficie	ent cause				
	disea	ased	healthy	all exposed are				
exposed	a			sick				
unexposed	·	-	d	all unexposed are healthy				
genetic diseases (Down's syndrome), rabies								
pro	babil	istic	model	of cause				
pro		<mark>istic</mark> µhealth	vl					
pro exposed			Y The disea	of cause se is more frequent d than in unexposed				
	sick	health	The disea in exposed	se is more frequent				

Probabilistic interpretation of cause

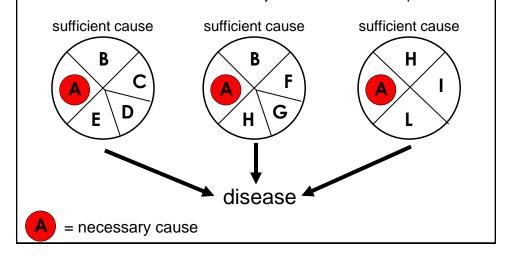

A risk factor is an exposure that changes in a regular and predictable way the risk (probability) of disease

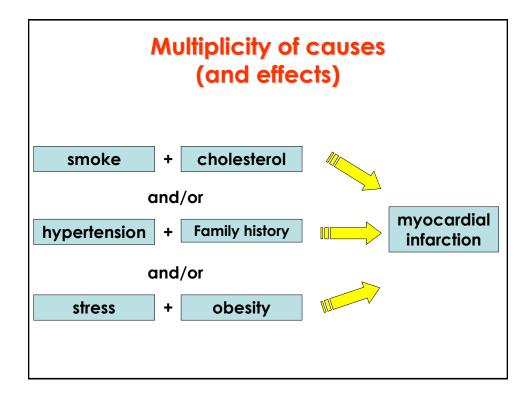
Example: the increase in lung cancer incidence in women is predicted by cumulative exposure to cigarette smoking (pack-years)

HILL'S CRITERIA FOR CAUSATION

- STRENGTH OF ASSOCIATION (effect size): small effects likely represent random fluctuations, while large effects are more likely to reflect a cause-effect association. For instance, the association between cigarette smoking and lung cancer (Relative Risk =14) is stronger than the association between cigarette smoking and myocardial infarction (RR = 1.62).
- CONSISTENCY (reproducibility): Findings should be replicated by different groups in different places with different samples.
 For instance, the association between alcohol intake and

esophageal cancer should be found in Europe as well as in the Far East.


6) PLAUSIBILITY: the new cause-effect relationship should be in line with current scientific knowledge.


However, the relation between Zodiac signs an myocardial infarction, found in a study, has no scientific explanation.

- EXPERIMENT: the cause-effect association, found in an observational study, should be confirmed by an experimental study.
- For instance, the association between smoking and lung cancer has been confirmed by experiments on animal models [Hutt, Carcinogenesis 2005]

Rothman's causal pie model

Multifactorial etiology = a disease is due to several causes. A set of causes occurring together, just sufficient to initiate the disease process, is called a **causal complex**. It is depicted as a pie with several slices, each representing a single component cause. The same disease can be elicited by different causal complexes.

Rothman's model is intrinsically deterministic. It turns probabilistic as we do not know all the risk factors involved in causal complexes.

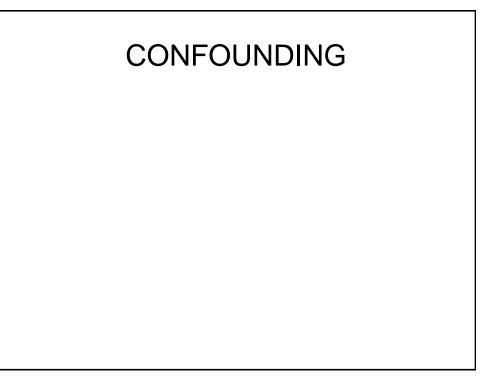
Eighty percent of cancer cases are due to environmental causes, Ninety percent of cancer causes is due to genetic causes.

The sum (80% + 90% = 170%) is greater than 100%.

This paradox can be explained by applying Rothman's causal pie model:

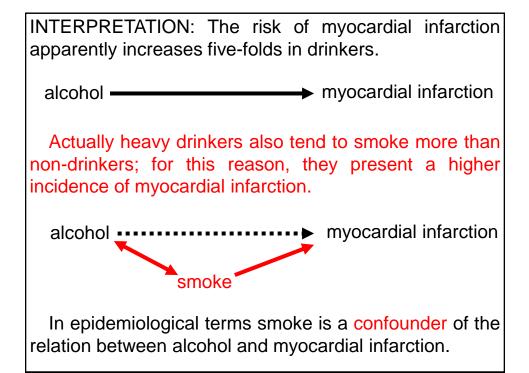
environmental causes are present in 80% of causal complexes; genetic causes are present in 90% of causal complexes.

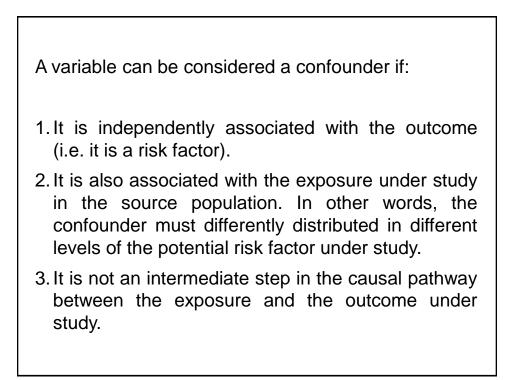
EFFECT MODIFIER


EFFECT MODIFIER

QUANTITATIVE INTERACTION = the effect of a risk factor gets stronger or weaker in different levels of the other factor.

For instance, the carcinogenic effect of alcohol changes as a function of genetic variants of aldehyde dehydrogenase, which detoxifies acetaldehyde, a genotoxic metabolite of alcohol. People who are heterozygous for the inactive enzyme, are at higher risk for esophageal cancer when drinkers [Lewis 2005; Yokoyama 2005].


QUALITATIVE INTERACTION = a factor has opposite effects (increase vs decrease) in different levels of the other factor.


For instance, acetylcholine, when administered to an isolated artery, causes vasodilation if the endothelium is intact, vasoconstriction is the endothelium has been removed

Cohort st	udy			W	HOLI	E SAM	PE			
					INFA	RCTION				
					Yes	No				
			Alcohol	Yes	100	900	1000			
				No	20	980	1000			
					120	1880	2000			
P(inf	arctio	n) =				RR (Relativ	/e Risk)=			
P(infarcti			=			OR (Odds				
P(infarctio	on/teet	otaler)	=							
		SMO	KERS				NC	ON-SM	OKE	25
		NFAF	CTION					INFARC		
		Sì	No					Yes	No	
Alcohol	Yes	99	801	900		Alcohol	Yes	1	99	100
	No	11	89	100			No	9	891	900
		110	890	1000				10	990	100
P(inf	arctio	n) =				P(in	farctio	n) =		
P(infarcti			=			P(infarc				
P(infarctio						P(infarct				
RR (Relati	ive Risk	()=				RR (Rela	tive Risk	c)=		
OR (Oc)c						OR (Oc				

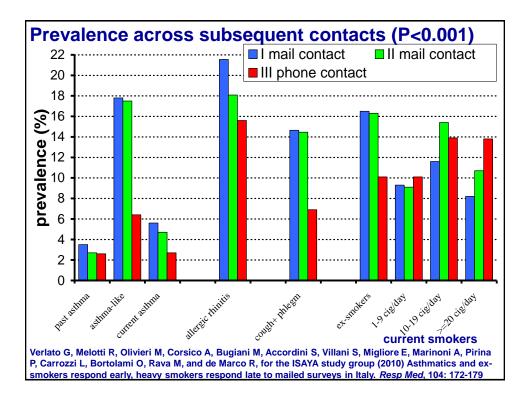
Cohort stu	udy	7		WHOLE SAMPI						
				INFARCTION						
					Yes	No				
			Alcohol	Yes	100	900	1000			
				No	20	980	1000			
					120	1880	2000			
P(infar	ction) =	120/200	0 = 6%		RR (Relativ	e Risk)=	0.10/0.	02 = 5	
P(infarctio	on/alc	ohol) =	100/100) DR (Odds Ratio) =		0) / (20*9	00) = 5.44
P(infarction/	/teeto	otaler) =	20/1000	= 2%						
SMC	SMO	KERS				N	ON-SN	IOKE	RS	
		INFAR	CTION					INFARCTION		
		Sì	No					Yes	No	
Alcohol	Yes	99	801	900		Alcohol	Yes	1	99	100
	No	11	89	100			No	9	891	900
		110	890	1000				10	990	1000
. (ction) =	110/100	0 = 11%	Ď		P(inf	arction)	= 10/100	0 = 1%
		99/900 =	99/900 = 11%		P(infarction/alcohol) =					
· · · · · · · · · · · · · · · · · · ·			00 = 11%		P(infarct	ion/tee	etotaler)	otaler) = 9/900 = 1%		
RR (Re	lative	e Risk)=	0.11/0.1	1 = 1		RR	(Relati	ve Risk):	= 0.01/0.	01 = 1
OR (Odds Ratio) = (99*89)			/ (11*80	1) = 1	0	R (Odd	s Ratio) :	= (1*891)) / (9*99) = 1	

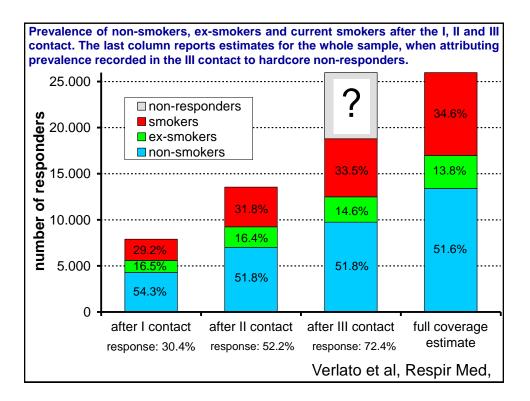
BIAS

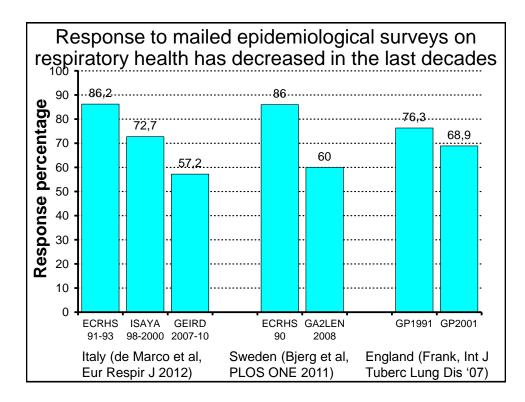
MEASUREMENT ERRORS

Random errors and systematic errors.

Random error reduces precision of the estimate (precision = one half of the confidence interval). Random error can be coped with by increasing sample size.


Systematic errors or **biases** are classified as information, selection and confounding biases.


Information bias: for instance, in multicenter studies it is important to centralized the most important laboratory assessment. Otherwise, comparison among lab values collected in different centers can be biased by different laboratory methods. Will-Rogers phenomenon or stage migration: the more lymph nodes are removed in gastric cancer patients, the more metastatic nodes are found [De Manzoni, Verlato et al, Brit J Surg, 2002]. Selection bias: In mailed surveys on respiratory health, asthmatics and ex-smokers tend to be early responders while current smokers tend to be late responders. Hence, if only 50% of the sample respond to the mailed survey, "prevalence rates" of asthma and ex-smokers are over-estimated, while the prevalence of current smokers in under-estimated.


Verlato et al. Asthmatics and ex-smokers respond early, heavy smokers respond late to mailed surveys in Italy. Resp Med 2010.

Confounding bias: In the Verona Diabetes Study, diabetic women experienced about the same mortality rate as diabetic men (RR = 0.97, 95% Cl 0.88-1.07), as if diabetes completely eliminated the "female survival advantage".

However, at baseline diabetic women were older than diabetic men: 68.3 ± 12.2 versus 62.2 ± 13.0 years (mean±standard deviation). Indeed, in multivariable survival analysis, the female survival advantage became evident when controlling for age: RR of women versus men = 0.64, 95% CI 0.58-0.71.

