Teaching is organised as follows:  
Unit  Credits  Academic sector  Period  Academic staff 
STATISTICA MEDICA  6  MED/01MEDICAL STATISTICS  See the unit page  See the unit page 
FONDAMENTI DI FISICA  4  FIS/07APPLIED PHYSICS  1° semestre 
Pasquina Marzola

The course is an introduction to understanding and appraising scientific methods used in quantitative biological and clinical research. Emphasis is on methods used to derive scientific laws or clinical relevant information from experimental or observational data, and on the applications of Physics in Medicine. The course aims to teach elementary statistical and mathematical methods used in the research, the principles of study design and experiments in biomedicine. Another aim is to teach principles of mechanic, fluid dynamics, optics , thermodynamics and electrology. Course aims and objectives The course aims to teach the essential elements of research methodology, statistics and the main principle of physics in biology. The focus is mainly on interpretation and understanding of appropriate methodology. Topics covered by the course are:  Measurement and its properties  The types of data generated in research studies  Statistical methods and probability models used to describe biological data  The most common inferential methods to analyse categorical or continuous data, including regression methods  Physical laws in biology and medicine

MM: STATISTICA MEDICA

 MM: Esercitazioni di Statistica Medica  Practical exercises dealing with the theoretical program will be performed.  MM: Lezioni di Statistica Medica  SYLLABUS The following topics will be addressed: 1. Measurements performed in biomedicine: precision, accuracy, repeatability and validity. 2. Basic statistical methods to describe, interpret and present quantitative information collected on groups of individuals or other statistical units. 3. Probability: definitions, basic rules to compute probabilities and expected events. 4. Evaluation of a screening procedure when a gold standard is available: sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratio. Intrarater and interrater agreement. 5. Main probabilistic models, useful to approximate the distribution of a biological variables within a population (binomial and gaussian distributions). 6. Basic design in observational and experimental research: random sampling and randomization. 7. Main inferential methods: confidence intervals to estimate parameters, and hypothesis testing to base decisions on experimental/observational evidence. 8. Basic concepts of multivariable statistical analysis: multiple linear regression to study quantitative outcomes, logistic model to study dichotomous outcomes, and Cox model to study survival. 9. EvidenceBased Medicine; systematic reviews and metaanalyses.

MM: FONDAMENTI DI FISICA

1. Introduction Units, standards and the SI system, dimensional analysis. Practical units. Scalar and Vector quantities. Operations on vectors (addition, subtraction, dot product, cross product). Graphic and Analytical Methods. 2. Elements of Mechanics Position, displacement, velocity and acceleration. Average and instantaneous velocity. Uniform motion. Motion at constant acceleration. Uniform circular motion. Motion in two dimensions. Dynamics: Newton’s Laws of motion. Weight: the force of gravity. The normal force. Linear Momentum and its conservation. Work and Energy. Theorem of kinetic energy. Conservative and dissipative forces. Potential energy, mechanical energy and its conservation. Gravitational and elastic potential energy . Power. Angular quantities. Torque of a force. Couple of forces. Moment of inertia, Angular momentum and its conservation. Equilibrium of rigid bodies. Levers of I, II; III kind. Static equilibrium analysis in some real situations as muscles and joints. Mechanical and technological properties of materials: Young's modulus and Hooke's law. 3. Fluids Density and specific gravity. Definition of pressure, flow rate, official and practical units. Measurement of pressure, manometers. Sphygmomanometer. Pascal's Law, Stevin's law, Archimedes' principle. Ideal fluid, Equation of continuity, Bernoulli's Equation. Applicatons of Bernoulli’s equation. Venturi effect. Viscous fluid, viscosity measurement and units. Poiseuille’s law, hydraulic resistance. Exercises and Applications in the circulatory system. Laminar or turbulent flow, the Reynolds number. Cardiac work. Kinetic factor. Surface tension. Laplace’s law. Applications of the Laplace’s. Capillarity. 4. Electric Phenomena Electric charge, definitions and units. Coulomb's law. Electric field, Energy, Electric Potential. Definition and units. Electric dipole, dipole layer, potential of a quiescent cell and of a front of depolarization. Electric currents, Ohm's law, Joule's law, resistors in series and parallel, Capacity, capacitors in series and in parallel. Electric power. RC circuit. Basics of Electromagnetism: Magnets and magnetic fields, magnetic fields produced by electric currents, force on an electric current in a magnetic field; definition and units. Lorentz force, Ampere's and FaradayNeumannLenz Laws. Examples. Principle of operation of some medical devices. 5. Thermodynamics Temperature, heat, specific heat. Definitions and units. Thermometer and temperature scales. Heat transfer by conduction, convection, radiation. Evaporation. Gas laws and absolute temperature. Thermodynamic transformations. First and second law of thermodynamics. Entropy. 6. Optics and Waves Wave phenomena, mechanical and electromagnetic waves. Wavelength, frequency and speed of propagation, intensity. Sound. Light: geometric optics. Laws of reflection and refraction. Optical fiber and medical applications. Plane mirror. Concave mirror. Paraxial approximation of geometric optics. Thin lenses, lens diopters. Equation of conjugate points for the plane mirror, concave mirror and thin lenses. Construction of images. The simple microscope. 7. Atomic and Nuclear Physics, Radioactivity and Radiation Protection (mention). Production of Xray fluorescence and bremsstrahlung. Electron volts, definition and use. Interaction of Xrays  gamma with matter: photoelectric effect, Compton effect, pair production. Half value thickness. Fundamentals of diagnostic radiology. Radioactivity, law of radioactive decay.

MM: STATISTICA MEDICA

 MM: Esercitazioni di Statistica Medica  In the second part of the exam students will have to solve problems of inferential statistics, which will require to compute confidence intervals and/or to perform simple statistical tests. For this purpose, students will be enabled to use a computer equipped with a spreadsheet.  MM: Lezioni di Statistica Medica  TYPE OF EXAMS A written exam will be performed in the computer lab. In the first part, students will have to answer about 30 multiple choice questions with 58 possible answers.

MM: FONDAMENTI DI FISICA

Written test consisting of simple exercises on the topics covered during the course and multiple choice questions. Possible oral exam (optional), which aims to acquire, if necessary, further elements for evaluation of students and eventually clarify aspects of the written test.
Reference books  
Author  Title  Publisher  Year  ISBN  Note 
Daniel WW, Cross CL  Biostatistica (Edizione 3)  Edises  2019  
Norman G, Streiner D  Biostatistica: quello che avreste voluto sapere… (Edizione 2)  Casa Editrice Ambrosiana, Milano  2015  
Verlato G, Zanolin ME  Esercizi di Statistica Medica, Informatica ed Epidemiologia  Libreria Cortina Editrice, Verona  2000  
Swinscow TDV, Campbell MJ  Le basi della Statistica per scienze biomediche  Edizioni Minerva Medica S.p.A., Torino  2004  
Bland M  Statistica Medica  APOGEO, Milano  2009  9788850327386  
Scannicchio D.  Fisica Biomedica  Edises  2013  978 88 7959 781 4  
Giancoli D.  Fisica. Principi e applicazioni  CEA  2006  8808087735 
© 2002  2019
Verona University
Via dell'Artigliere 8, 37129 Verona 
P. I.V.A. 01541040232 
C. FISCALE 93009870234
Statistics

Credits