Bachelor's degree in Environmental and Workplace Accident Prevention Techniques (Trento)

Biomolecular fondamentals of life (2017/2018)

Course code
Monica Mottes

Teaching is organised as follows:
Unit Credits Academic sector Period Academic staff
BIOCHIMICA 2 BIO/10-BIOCHEMISTRY TPALL 1° ANNO 1° Semestre Massimo Donadelli

Learning outcomes

The whole course is intended to provide basic knowledge of biochemistry, cell biology and genetics, preparatory for further specific courses. Goals of teaching are the understanding of :
-Basic knowledge of organic chemistry preparatory for biochemistry.
-Structure-function relationships of the most important biological macromolecules and of the metabolic regulation at the molecular level.
-Cross-talk between the different biochemical pathways and the energy level changes associated
- Molecular and cellular mechanisms common to living organisms
- Mode of action and consequences of chemical and physical mutagens
- Inheritance modes of genetic traits.
At the end of the Course the student should demonstrate to have acquired the proper scientific terms and notions in order to critically and autonomously evaluate the biochemical processes of life. He/she should also demonstrate to know basic mechanisms which regulate cell activities, reproduction, interactions. He/she should also demonstrate to be familiar with basic mendelian genetics


- Organic chemistry: nomenclature of organic compounds and recognition of functional groups. - Carbohydrates: monosaccharides, disaccharides, polysaccharides, glycogen, starch, cellulose, glycosaminoglycans, proteoglycans and glycoproteins. - Proteins: amino acids, protein structure levels, peptide bond, alpha-helix, beta-sheet, globular protein, myoglobin and hemoglobin, allosteric regulation. - Enzymes: Classification of enzymes, active site, specificity and isoenzymes, cofactors and coenzymes, vitamins, regulation of enzyme activity, allosteric enzymes. - Lipids: lipids and their functions, acylglycerols fatty acids, phospholipids, terpenes, steroids, cholesterol, fat-soluble vitamins, eicosanoids, lipoproteins. - Introduction to metabolism: catabolism and anabolism, ATP and phosphocreatine, coenzymes redox (NAD+ and FAD), redox reactions, metabolic pathways, metabolic intermediates, regulating metabolism, coupled reactions, signs of genetic defects of metabolism. - Carbohydrate metabolism: glycolysis and its regulation, pentose phosphate pathway, alcoholic and lactic fermentation, synthesis of acetyl-coenzyme A, oxidative decarboxylation of pyruvate, Krebs cycle and its regulation, gluconeogenesis and its regulation, Cori cycle, glycogenolysis and glycogen synthesis, hormone regulation (glucagon, insulin and adrenaline), diabetes mellitus. - Oxidative phosphorylation: mitochondrial respiratory chain, standard reduction potential, electron transport and proton pumps, mitochondrial ATP synthase. - Lipid metabolism: beta-oxidation of fatty acids, ketones, lipid biosynthesis, acid synthase-fat, cholesterol metabolism. - Metabolism of proteins and amino acids: transamination, glucose-alanine cycle, urea cycle, biosynthesis of amino acids, branched chain amino acids. The frontal teaching is the method adopted in this Course.
The historical bases of modern biology. General biology of prokaryotes. The evolution of eukaryotes; characteristics of the e. cell; cell cycle and its regulation, mitosis. The molecular bases of inheritance: DNA (structure, replication, other features). Definition of gene. The informational pathway: transcription (in prokaryotes and eukaryotes); mRNA processing, the regulation of gene expression. Chromatin and chromosomes, normal and pathologic human karyotype. Gene dosage and X chromosome inactivation in mammals. Sex determination in the developing embryo. Mutations: various types; how , where and when do they happen. Various types of mutagens, mutagenesis tests, DNA repair mechanisms. Somatic mutations and cancer. Sexual reproduction, meiosis, human gametogenesis. Mendel’s laws of inheritance. Association and recombination. Human genetics, how to construct and interpret a pedigree. Genetics of blood groups (AB0, Rh). Examples of autosomal inheritance (dominant and recessive) and X-linked inheritance. Examples of mendelian diseases in man. DIDACTIC MODES Attendance to lessons is mandatory. Classes will consist of theorical lessons covering the whole exam program. Oral explanations will be coadiuvated by PowerPoint presentations and videos, which will be made available to students through a dedicated Department web site. Additional didactic supports (multiple choice quizzes for self-assessment, journal articles , reviews, etc.) may be suggested during the course and will be made available to students for download. During the whole Academic Year, students may request personal reception to the teachers, by e mail. SUGGESTED TEXTBOOKS - Elementi di biologia (Cellula-Genetica)- H. Helena Curtis, et al., I edizione italiana, 2017 Zanichelli ed. Bologna, ISBN: 9788808773784 - Elementi di biologia e genetica D.Sadava et al., IV edizione italiana, 2014 Zanichelli ed. Bologna, ISBN: 9788808335210

Assessment methods and criteria

Written test made of multiple choice quizzes and open questions. Students will undertake both modules at the same time. Further information about exam organization is available in each module form. Final evaluation will depend on the results of both modules; students will pass the examination if results of both modules are ≥ 18/30. Students can retire/refuse the proposed mark .

Reference books
Author Title Publisher Year ISBN Note
Ginelli et al. Molecole, cellule e organismi EdiSES 2016
M. Samaja, R. Paroni Chimica e Biochimica Piccin 2016
Purves W.K., Savada D., Orians G.H., Heller H.C. Biologia Ed. Zanichelli, Bologna 2001

© 2002 - 2020  Verona University
Via dell'Artigliere 8, 37129 Verona  |  P. I.V.A. 01541040232  |  C. FISCALE 93009870234
Statistics  |  Credits