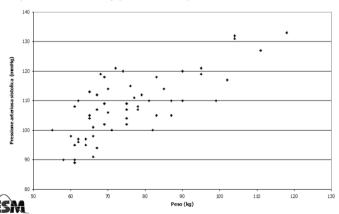
Analisi di relazioni tra variabili

- Correlazione: analizza se esiste una relazione tra due variabili (come e quanto due variabili variano insieme)
- Regressione: analizza la forma della relazione tra variabili

Esempio: Consideriamo i dati relativi alla pressione sistolica arteriosa e al peso di 59 soggetti:

Peso	Pressione arteriosa sistolica	Peso	Pressione Arteriosa sistolica
55	100	72	121
58	90	74	120
60	98	75	104
61	95	75	102
61	108	75	109
61	89	75	107
61	90	76	115
62	97		
62	96	77	111
62	110	78	108
64	95	78	107
64	97	79	112
65	105	81	110
65	104	82	100
65	113	83	105
66	98	83	118
66	101 91	85	114
67		87	105
67	107 112	87	110
67	94	90	110
68	119	90	120
69	102	95	121
69	102	95	119
69	118	99	110
69	109		
70	114	102	117
70	106	104	131
71	100	104	132
		111	127
		118	133


MISURE DI ASSOCIAZIONE TRA 2 VARIABILI QUANTITATIVE

- Covarianza
- •Coefficiente di correlazione

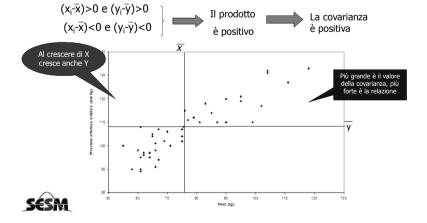
DIAGRAMMA DI DISPERSIONE

• Riportiamo su un diagramma cartesiano in ascissa (X) i valori del peso e in ordinata (Y) i valori della pressione arteriosa

Commenti

Il grafico precedente ci mostra che:

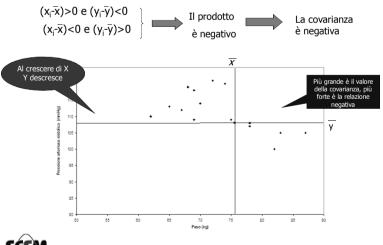
- Peso e pressione sistolica arteriosa sono "positivamente associate": i soggetti che hanno peso più elevato, hanno anche valori della pressione arteriosa maggiori
- •La relazione tra le due variabili, ad una prima osservazione, sembra essere lineare



Quanto sono "associate"? Qual è la forza della relazione? Che tipo di relazione tra le variabili?

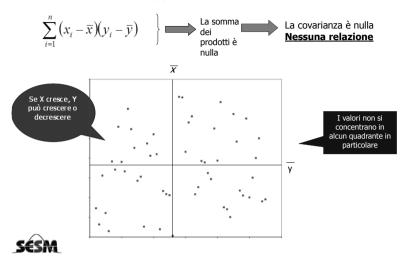
Covarianza positiva

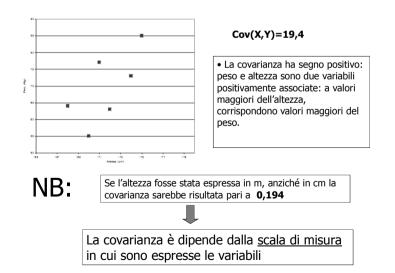
* Considera i valori: $(x_i - \overline{x})(y_i - \overline{y})$


Covarianza

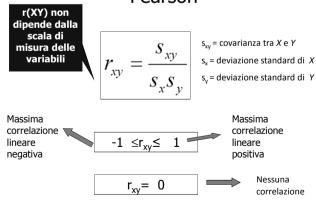
$$Cov(X,Y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Dove (x_i, y_i) sono i dati disponibili per due variabili numeriche $\overline{x},\overline{y}$ indicano le due medie aritmetiche

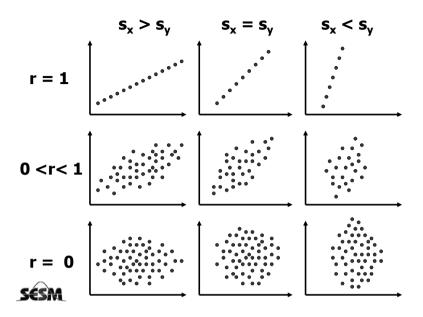

SESM


Covarianza negativa

Covarianza nulla


SESM

Esercizio: rappresentare graficamente i dati riportati in tabella e ricavare il valore della covarianza. Commentare i risultati ottenuti.


	statura (cm) ((X)	peso (Kg) (Y)	(x-171.7)	(y-69.5)	(x-171.7)(y-69.5)	хy
	172	63	0.3	-6.5	-1.95	10836
	174	73	2.3	3.5	8.05	12702
	171	77	-0.7	7.5	-5.25	13167
	175	85	3.3	15.5	51.15	14875
	168	64	-3.7	-5.5	20.35	10752
	170	55	-1.7	-14.5	24.65	9350
tale:	1030	417			97	71682
edia:	171.7	69.5				

S€SM

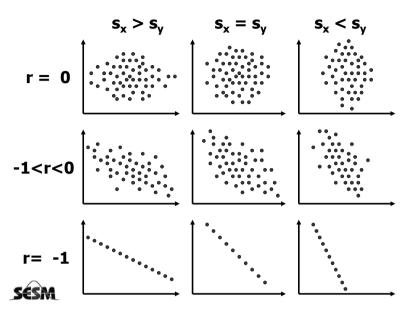
Coefficiente di correlazione di Bravais-Pearson

Esempio: Utilizzando i dati dell'esempio relativo a peso e pressione arteriosa, ricaviamo il valore della covarianza e del coefficiente di correlazione:

Sapendo che:

$$\Sigma x = 4310$$
,

$$s(x)=14.3$$


$$s(y)=10.6$$

$$s_{xy} = \frac{1}{n-1} \left(\sum_{i=1}^{n} \left(x_i y_i \right) - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i \right) = \frac{1}{57-1} (471976 - (1/57) * 6158 * 4310) = 113.3$$

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{113.3}{14.3 * 10.6} = 0.75$$

- Come si poteva osservare graficamente, peso e pressione sono positivamente associate.
- •r è molto elevato: tra le due variabili c'è relazione lineare

Coefficiente di correlazione di Bravais-Pearson

La correlazione è significativa?

- Il valore di $\bf r$ è stato calcolato da un campione e non dalla popolazione ($\bf \rho$)
- Ipotesi nulla: $\rho = 0$ (ρ è il coefficiente di correlazione della popolazione, **r del** campione).
- Il valore calcolato indica una correlazione significativa?

Coefficiente di correlazione di Bravais-Pearson

OK: la correlazione è significativa ma....

- Le 2 variabili sono distribuite normalmente?
- La relazione tra le 2 variabili è lineare?
- Ricordarsi che anche se c'e' correlazione non vuol dire che c'e' nesso di causaeffetto ...