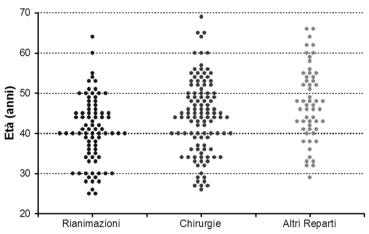
Analisi della Varianza

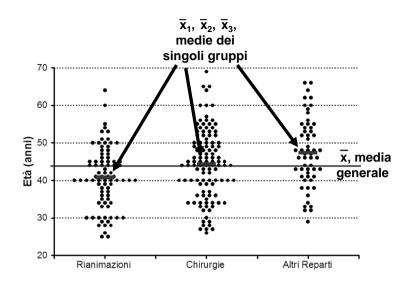
(ad un criterio)

ANOVA

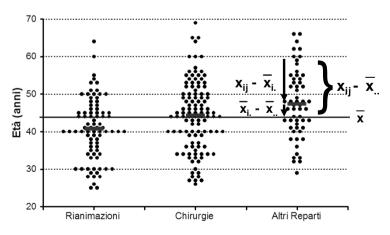
(Analysis Of Variance)

ANALISI DELLA VARIANZA - 2


Oltre ad una media generale, \overline{x} , abbiamo k medie, una per ognuno dei singoli gruppi, \overline{x}_1 , \overline{x}_2 , \overline{x}_3 , ..., \overline{x}_k


ANALISI DELLA VARIANZA - 1

Abbiamo k gruppi, con un numero variabile di unità statistiche. Nella notazione classica, ogni unità statistica viene individuata da due numeri in posizione pedice: il primo indica il gruppo di appartenenza, e il secondo indica la posizione del soggetto all'interno del gruppo.


gruppo 1	gruppo 2	gruppo 3		gruppo k
$\mathbf{X_{11}}$	$\mathbf{X_{21}}$	X ₃₁		X_{k1}
X_{12}	\mathbf{X}_{22}	\mathbf{x}_{32}		$\mathbf{x}_{\mathbf{k}2}$
X_{13}	X_{23}	X ₃₃		$\mathbf{x}_{\mathbf{k}3}$
X_{14}	X_{24}	X_{34}		X_{k4}
X_{15}	X_{25}	X ₃₅		X_{k5}
X ₁₆	X_{26}	X ₃₆		$\mathbf{x}_{\mathbf{k}6}$
X_{17}	\mathbf{X}_{27}	X ₃₇		$\mathbf{X_{k7}}$
X_{18}		X ₃₈		X_{k8}
		X ₃₉		X _{k9}
$\overline{\mathbf{x}}_{1}$.	$\overline{\mathbf{X}}_{2}$.	$\overline{\mathbf{X}}_{3.}$	•••••	$\overline{\mathbf{X}}_{\mathbf{k}}$.

Età dei medici operanti nelle Rianimazioni, Chirurgie ed altri Reparti di un'Azienda Ospedaliera del Veneto

SCOMPOSIZIONE DELLA DEVIANZA nell'Analisi della Varianza - 1

ANALISI DELLA VARIANZA - 3

Ipotesi $\begin{cases} H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_0 \\ H_1: \text{ almeno una media differisce dalle altre} \end{cases}$

Per rispondere a questa domanda, possiamo fare tante t di Student, confrontando tutte le possibili coppie di medie?

NO, perché altrimenti avremmo un'inflazione (aumento abnorme) di α (alfa), probabilità di errore del I tipo.

E' meglio quindi ricorrere ad un test globale, che confronti fra di loro tutti i gruppi:

l'analisi della varianza.

 x_{ij} - \overline{x}_{ij} = scarto di una singola osservazione (valore jesimo del gruppo iesimo) dalla media generale

 $\overline{x}_{i.}$ - $\overline{x}_{i.}$ = scarto della media del gruppo ies*imo* dalla media generale

 x_{ij} - $\overline{x}_{i.}$ = scarto di una singola osservazione (valore jesimo del gruppo iesimo) dalla media del gruppo iesimo

SCOMPOSIZIONE DELLA DEVIANZA nell'Analisi della Varianza - 2

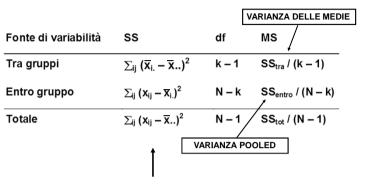
Per una singola osservazione:

Variabilità Variabilità entro gruppi $(x_{ij} - \overline{x}_{..}) = (\overline{x}_{i.} - \overline{x}_{..}) + (x_{ij} - \overline{x}_{i.})$ Variabilità fra gruppi

Si può dimostrare che, per tutte le osservazioni:

I° STEP: definire l'ipotesi da verificare

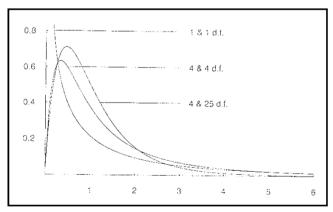
$$\begin{cases} H_0 \colon \mu_0 = \mu_1 = \dots = \mu_k \\ H_1 \colon \mu_i \neq \mu_j \end{cases}$$


almeno una media differente dalle altre

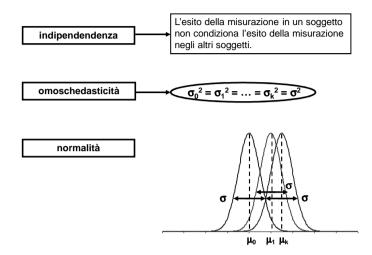
II° STEP: definire la statistica test

Se valgono le assunzioni di normalità e omoschedasticità

Tavola ANOVA ad un criterio di classificazione



Scomposizione della devianza campionaria per fonti di variabilità:


- Differenze tra gruppi: SS_{tra}
- Errore campionario: SS_{entro}

Distribuzione F di Snedecor

$$\boldsymbol{F} \sim \; \boldsymbol{F}_{\nu_1,\,\nu_2}$$

ASSUNZIONI SU CUI SI BASA L'ANALISI DELLA VARIANZA:

L'età dei medici (n=251) è significativamente diversa nelle Rianimazioni, nelle Chirurgie e negli altri Reparti?

fonte di variabilità	gradi di libertà	devianza	varianza	test F (signi- ficatività)
TRA gruppi	2	1546,10	773,05	9,779
ENTRO gruppi	248	19604,73	79,05	(P<0,001)
TOTALE	250	21150,84		

Si rifiuta l'ipotesi nulla: l'età differisce significativamente tra i vari Reparti.