Measures of association

Teacher: Prof. Giuseppe Verlato
Unit of Epidemiology \& Medical Statistics, University of Verona

Measures of association

They convey the degree of association between a determinant and a parameter of occurrence.

They are obtained by comparing the parameter of occurrence in different determinant categories with the parameter of occurrence in a reference category.

For instance, the incidence of hepatic cirrhosis among HBsAg positive people will be compared with the incidence among HBsAg negative people.

The cause-effect relation between cigarette smoke and lung cancer is much stronger than the cause-effect relation between smoke and myocardial ischemia (RR:14 vs 1.62).

However the association between smoke and myocardial ischemia is more important from a public health perspective (RD: 2.56/1000 vs $1.3 / 1000$ person*years).

$$
\frac{1.4}{1000 \mathrm{py}} * \frac{1000 \text { pa }}{0.1}=1.4 / 0.1=14
$$

Etiologic fraction

$$
\left(I_{1}-I_{0}\right) / I_{1}
$$

To compute etiologic fraction:

1) Compute the difference between incidence among exposed and incidence among unexposed.
2) Divide the difference by incidence among exposed.

Important to address causes (etiology) of diseases.

	non-smokers	smokers
Lung cancer	0.1	1.4
	$\frac{1000 \text { person*years }}{}$	$\frac{4.13}{1000 \text { person*years }}$
Myocardial ischemia	$\frac{6.69}{1000 \text { person*years }}$	$\frac{1000 \text { person*years }}{}$

	Etiologic fraction
Lung cancer	$\frac{1.4 / 1000 \text { p.y. }-0,1 / 1000 \text { p.y. }}{1.4 / 1000 \text { p.y. }}=\mathbf{0 . 9 2 9}=\mathbf{9 2 . 9} \%$
Myocardial ischemia	$\frac{6.69 / 1000 \text { p.y. }-4.13 / 1000 \text { p.y. }}{6.69 / 1000 \text { p.y. }}=\mathbf{0 . 3 8 3}=\mathbf{3 8 . 3} \%$

92.9% of smokers with lung cancer would not have had the disease, if they hadn't smoked.
38.3% of smokers with myocardial ischemia would not have had the disease, if they hadn't smoked.

Smoke is associated with 61.2 additional cases of bronchial carcinoma per 100,000 smokers every year (RD). This figure allows to evaluate the impact of smoke on the onset of bronchial carcinoma from a Public Health perspective.

The risk of bronchial carcinoma is 11 times higher in smokers than in non-smokers (RR). This figure suggests that a strong association exists between smoke and bronchial carcinoma, probably reflecting a cause-effect relation.
91.3% of smokers with bronchial carcinoma would not have had the disease if they had not smoked (etiologic fraction).

Odds

The horse Varenne has 20% chances to win a race.
The horse Varenne $\longrightarrow 20 \%$ chances to win
Odds of winning $=20 / 80=1 / 4=0.25$
Hence Varenne is given 4 to 1

If you bet $1000 €$ on Varenne winning one hundred times, you should win $4,000 €$ twenty times, $80,000 €$ overall, you should lose $1000 €$ eighty times, $80,000 €$ overall, so that losses are balanced by wins.

ODDS RATIO (OR) - 1

(in Italian «rapporto crociato», an indirect estimate of Relative Risk)

EXAMPLE:

A smoker has 40% chances to be hypertensive at an age of 60 years.
A non-smokers has 20% chances to be hypertensive when 60 years old.

1) Probability $(p) \longrightarrow p$ (hypertension $/$ smoker $)=40 / 100=0.4=40 \%$
$p($ hypertension $/$ non-smoker $)=20 / 100=0.2=20 \%$
2) Odds $(\omega)=\frac{\mathrm{P}}{1-\mathrm{p}} \longrightarrow$ odds of hypertension in smokers $=40 / 60=0.67=67 \%$
3) $\underset{\text { Odds Ratio }}{\text { (O.R.) }}=\frac{\frac{p_{1}}{1-p_{1}}}{\frac{p_{0}}{1-p_{0}}}$
odds ratio of hypertension in smokers with respect to non-smokers $=0.67 / 0.25=2.67$

ODDS RATIO (OR) - 2

EXAMPLE: Risk factors for pleural mesothelioma are investigated:

1) All patients suffering from pleural mesothelioma (cases) are identified, and their exposure to asbestos (risk factor) is assessed.
2) Two controls are selected for each case, i.e. two individuals with the same characteristics (same age, sex, site of residence, profession, ...).
3) Controls exposed to asbestos are identified.
4) Results are summarized through a 2*2 contingency table $2 * 2$.

	cases (M+)	controls (M-)	
exposed (E+)	30	10	$\mathbf{4 0}$
unexposed (E-)	20	90	$\mathbf{1 1 0}$
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$

ODDS RATIO (OR) - 3

1) Let's compute the Relative Risk

It is not possible as incidence or prevalence among exposed and unexposed are unknown. The ratio of diseased to healthy people (cases / controls) is artificially established by the Researcher.
2) Ahi que aremos ? (Ahi, what shall we do?)
3) Let's devise a new measure of association, the Odds Ratio!
a) The odds of exposure is computed among cases
$p(E+/ M+)=30 / 50 \quad p(E-/ M+)=20 / 50 \quad$ odds $=\frac{30 / 50}{-----30-50}$
b) ... and among controls

$$
p(E+/ M-)=10 / 100 \quad p(E-/ M-)=90 / 100 \quad \text { odds }=\frac{10 / 100}{90 / 100}=\frac{10}{90}
$$

c) The Odds Ratio is computed

OR $=\frac{\text { odds in cases }}{\text { odds in controls }}=\frac{30 / 20}{10-90}=\frac{30 * 90}{20 * 10}=\frac{27}{2}=13.5$
N.B. The Odds Ratio of exposure is equivalent to the Odds Ratio of disease in case-control study.

The Odds Ratio is close to the Relative Risk when p (probability) is low. In this case, 1-p ≈ 1 and hence the odds $p /(1-p) \approx p / 1=p$.
The Odds Ratio is a measure somewhat difficult to understand, and should be abandoned according to some Authors.

However the Odds Ratio is necessary:

1) to evaluate case-control studies;
2) to express the results of a logistic regression model.

EXAMPLE

Randomized Clinical Trial: Helsinki Heart Study
Treatments: Group A: 2,051 patients treated with Gemfibrozil
Group B: 2,030 patients treated with placebo
Primary end-point: Cumulative incidence of myocardial infarction (fatal or not fatal) during a five-year follow-up

Results

Treatment	Number of events	Cumulative incidence	Patients without the event under study
Gemfibrozil	56	$2.73 \%(56 / 2051)$	$97.27 \%(1995 / 2051)$
Placebo	84	$4.14 \%(84 / 2030)$	$95.86 \%(1946 / 2030)$

Trial results	
Measures of association	
ARR = Absolute Risk Reduction (Differenza assoluta tra i rischi)	$4.14-2.73=1.41 \%$
$R R=$ Relative Risk $_{\text {gemfibrozil versus placebo }}$ (Rischio Relativo)	$2.73 / 4.14=0.659$
RRR = Relative Risk Reduction (Riduzione relativa del rischio)	$\begin{gathered} 1.41 / 4.14=0.341= \\ 34.1 \% \end{gathered}$
Odds Ratio (OR) (Rapporto crociato)	$\begin{gathered} (56 * 1946) /(84 * 1995)= \\ 0.650 \end{gathered}$
Number Needed to Treat (NNT) (patients to treat in order to prevent an event)	$1 / 0.0141=70.9 \approx 71$

