Descriptive Statistics

Measures of central tendency Measures of variability / dispersion

Prof. Giuseppe Verlato Unit of Epidemiology & Medical Statistics Department of Diagnostics & Public Health University of Verona

Trilussa's original poem

«Me spiego: da li conti che se fanno seconno le statistiche d'adesso risurta che te tocca un pollo all'anno: e, se nun entra ne le spese tue, t'entra ne la statistica lo stesso perché c'è un antro che ne magna due»

Statistical Synthesis

A data set is fully described by three main properties:

- Central tendency or location
- Variability or dispersion or spread
- Shape

These <u>synthetic measures</u>, which can adequately summarize a data set, are named:

- **statistics**, expressed with Latin letters, when computed on a <u>sample</u>
- **parameters**, expressed with Greek letters, when computed on a <u>population</u>

Measures of central tendency

- MEAN
- MEDIAN
- MODE

Measures of variability

- RANGE and INTERQUARTILE RANGE
- SUM OF SQUARES → VARIANCE → STANDARD DEVIATION → COEFFICIENT of VARIATION

Most biological variables (weight, height, diastolic pressure, heart rate) have a normal distribution, where mean, median and mode are the same.

Some variables (reaction time, survival time, number of metastatic lymph nodes, serum concentrations of triglycerides) have a skewed (asymmetric) distribution, where mean, median and mode differ.

Fictitious example:

During the Nineties 7 physicians were working in a hospital unit: 2 specializing doctors, 2 assistants, 2 senior physicians and 1 director. Their income was respectively 2, 2, 3, 3, 4, 4 e 25 millions lire per month. Which measure of central tendency is most suited to summarize this data set ?

 $mean = \Sigma x/n = 43/7 = 6.14 millions per month$ median = value of the 4th observation in the ordered series = 3 millions per month

The measure of central tendency, which best summarizes these physicians' income, is the median not the mean.

Mean	Median	Mode
	The most suited measure	The most suited measure
The most used measure of central	with asymmetrical	when a value has a high
tendency	distributions (reaction time,	relative frequency (number
	survival time)	of fingers in the right hand)
Easy to mathematically handle	the 50 th percentile	The most frequently
		occurring value
It is based on all available		
information ($\Sigma x/n$)		
A weighted value is easy to		
compute:		
$\mathbf{x} = (\overline{\mathbf{x}_1} n_1 + \overline{\mathbf{x}_2} n_2) / (n_1 + n_2)$		
1 st property of the mean: the sum	the sum of distances is the	
of the deviations from the mean is	lowest when computed from	
zero: $\Sigma(x - \overline{x}) = 0$	the median $\Sigma \mathbf{x} - \mathbf{me} = \min$	
the sum of squared deviations is		
the lowest when computed from		
the mean: $\Sigma(x - \overline{x})^2 = \min$		

	Chickens	Reference			
	per month	value	Deviation	Deviation^2	
	1		-5	25	1° property: the
	6	6	0	0	algebraic sum of the
	11	mean	5	25	deviations from the
Total	18		0	50	mean is zero
					mean is zero
Deviatio	ons are compu	ited from valu	ues other tha	n the mean	
	1		-4	16	2° property: the sum
	6	5	1	1	of squared deviations
	11		6	36	is the lowest when
Total	18		3	53	
					computed from the
	1		-7	49	mean
	6	8	-2	4	
	11		3	9	
Total	18		-6	62	

-	•	• •	er surgery fo en hospital
Days hospita		Number of patients	Overall days
1		9	1*9 = 9
2		15	2*15 = 30
3		12	3*12 = 36
4		9	4* 9 = 36
5		5	5*5 = 25
TOT	AL	50	136

MODE and MEDIAN in a frequency distribution							
	Days of hospital stay		Cumulative abs. frequency				
	1	9	9				
mode = 2 days	2	15	24				
	3		36				
	4	9	45				
	5	5	50				
	TOTAL	50					
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2							
MED	MEDIAN = $(3 + 3) / 2 = 3$ days						

Measures of variability				
Italian name	English name			
Campo di variazione	Range			
Distanza interquartile	Interquartile range			
Devianza	Sum of squares (SSq)			
Varianza	Mean Square (MSq) / variance			
Deviazione standard	Standard deviation			
Coefficiente di variazione	Variation coefficient			

EXAMPLE: DESCRIPTION OF A SERIES OF GASTRIC CANCER PATIENTS

In the series of 921 patients, the total number of dissected lymph nodes was 23,288, with an average of 25.3 ± 16.3 (mean \pm SD) dissected nodes per case (median 21, range 1-108). The mean number of metastatic nodes was 4.3 ± 7.5 (median 1, range 0-74) in the overall series and 8.3 ± 8.7 (median 5, range 1-74) in pN+ patients.

Bibliografia

De Manzoni G, Verlato G, Roviello F, Morgagni P, Di Leo A, Saragoni L, Marrelli D, Kurihara H, Pasini F, for the Italian Research Group for Gastric Cancer (2002) The new TNM classification of lymph node metastasis minimizes stage migration problems in gastric cancer patients. Brit J Cancer, 87: 171-174

Table 3.	Allergy parameters in subjects without self-reported allergic rhinitis and in
	subjects with perennial, seasonal and perennial+seasonal rhinitis. Absolute
	frequencies with percentage in brackets are reported for all variables but
	total IgE, which is expressed as median (interquartile range).

	No rhinitis	Subjects with s	elf-reported alle	ergic rhinitis	
		Perennial	Seasonal	Perennial +	Р
	(n=745)	(n=19)	(n=50)	seasonal (n=87)	value
Parental allergy	120/736 (16)	5/19 (26)	21/48 (44)	30/87 (34)	< 0.001
Pos. specific IgE					
D.pteronyssinus	56/623 (9)	6/15 (40)	7/43 (16)	19/70 (27)	< 0.001
Cat	17/623 (3)	2/15 (13)	4/43 (9)	12/70 (17)	
Timothy grass	57/623 (9)	3/15 (20)	26/43 (60.5)	39/70 (56)	< 0.001
Cl.herbarum	3/623 (0.5)	1/15 (7)	1/43 (2)	3/70 (4)	
Pariet. judaica	29/623 (5)	1/15 (7)	16/43 (37)	32/70 (46)	< 0.00
Total IgE	36.1 (13.2-101)	110.5 (11.6-217.5)	87 (38-214.5)	106 (50.5-240)	<0.001

by one-way ANOVA for total IgE after logarithmic transformation. Significance was not evaluated by chi-squared test (---) when cells with expected value<5 exceeded 25%. NS = not significant

Olivieri M, Verlato G, Corsico A, Lo Cascio V, Bugiani M, Marinoni A, de Marco R, for the Italian ECRHS group (2002) Prevalence and features of allergic rhinitis in Italy. Allergy, 57:600-606

In the example dealing with gastric cancer the **range** is used as measure of variability to describe a series as a whole.

In the example dealing with allergic rhinitis the **interquartile range** is used to **compare** variability among groups with **very different size**: indeed, the group with perennial allergic rhinitis comprises only 19 subjects, while the group without allergic rhinitis includes 745 subjects.

Variance was created to take into account sample size! Variance = sum of squares / n				
owever, if one	considers a sam	ple of only one subje	ect eating 6 chickens/month	
Mean	Sum of squares	Uncorrected variance	Corrected variance	
6	0	0/1 = 0	0/0 = ?	
	-	ares by n-1 rather etter reflecting the	than by n, variance is real situation.	
Mea	n Su	m of squares	Corrected	
			variance	
6 chicker	ns/mo 2 c	hickens ² /mo ²	1 chickens ² /mo ²	

Variance

- It takes into account all observations, and hence it is <u>largely</u> <u>affected</u> by <u>outliers</u>. For this reason, variance is suited only for <u>symmetric distributions</u>.
- Variance is the <u>most important</u> measure of variability in <u>statistical theory.</u>
- To compute sum of squares, deviations were squared as well as their unit of measurement. Variance is also expressed in <u>squared</u> <u>units</u>, and <u>cannot be directly compared</u> with the mean or other measures of central tendency. For this reason, variance is usually not reported in biomedical scientific literature.
- **Degrees of freedom (df)** represent the number of <u>independent</u> <u>observation</u> in the <u>sample</u> under study (n -1), as a statistic (the mean) has already been computed from available data.

Main features of Standard Deviation

- It measures the <u>distance from the mean</u>. Remember that the deviation is positive or negative, while the distance is an absolute number. It measures the **variability** of a random variable <u>around the mean</u>.
- It is directly <u>comparable</u> with the <u>mean</u>, as they are computed using the same unit of measurement. For this reason the standard deviation is the <u>most widely used</u> measure of variability in the biomedical scientific literature.
- However it is <u>less important</u> than variance in <u>statistical</u> <u>theory</u>.

Coefficient of Variation (CV) - 1

SAME variable but very different means

Three newborns weigh respectively 3, 4 and 5 Kg (mean \pm SD: 4 \pm 1 Kg). Three one-year-old infants weigh 10, 11 and 12 Kg (mean \pm SD: 11 \pm 1 Kg). The standard deviation is the same in both groups, but common sense suggests that weight variability could be higher in the newborn group.

Two DIFFERENT variables

In 91 female 1st class medical students at Verona University in 1995/96, weight was 55.1 ± 5.7 Kg (mean ± SD) with a range of 45-70 Kg, height was 166.1 ± 6.1 cm (mean±SD) with a range of 150-182 cm. Which is higher ? the variability of weight or the variability of height ?

Coefficient of Variation (CV) - 2							
-	To answer these questions one has to compute the coefficient of variation: CV = (standard deviation / mean) * 100.						
		is expressed as percentag	e of the mean.				
	Mean	Standard deviation	CV				
Newborns	4 Kg	1 Kg	25 %				
One-year-old infants	11 Kg	1 Kg	9.1 %				
Weight v	Weight variability is higher in newborns.						
	Mean	Standard deviation	CV				
Weight	55.1 Kg	5.7 Kg	10.3 %				
Height	166.1 cm	6.1 cm	3.7 %				
Weight variability is higher than height variability.							

Measures of Shape

Measures of symmetry

1) Galton skewness = [(Q3-Q2) - (Q2-Q1)] / (Q3-Q1) where Q3, Q2, Q1 =75th, 50th and 25th percentile For example, if we consider both men and women attending the 1st class of Medical School at Verona University in 1995: Galton skewness = [(174.5-169)-(169-164)] / (174.5-164] = = [5.5-5] / 10.5 = 0.5 cm / 10.5 cm = 4.8%

A small positive asymmetry is detected.

2) Pearson's coefficient of skewness = (mean - mode) / st.dev.

Measure of flattening

1) Kurtosis = a measure of the concentration of the distribution around its mean. It indicates whether the distribution is flattened or has a peak around the mean. Kurtosis = $[\Sigma(x - \overline{x})^4/n] / [\Sigma(x - \overline{x})^2/n]^2$

