Descriptive statistics

Frequency distributions
Percentiles

Prof. Giuseppe Verlato
Unit of Epidemiology \& Medical Statistics
Department of Diagnostics \& Public Health
University of Verona

Frequency distribution

With large databases, it is very difficult to pick out the information needed at a glance. Instead, it is more convenient to summarize variables into tables called "frequency distributions."

The frequency (n, f) of a particular observation is the number of times the observation occurs in the data.

A frequency distribution is a table reporting the levels of a variable in the 1° column and the corresponding frequencies in the 2° column.

A frequency distribution shows the values a variable can take, and the number of people or records with each value.

- Frequency distribution tables can be used for both categorical and numeric variables.
- No data transformation is necessary to create a frequency distribution for categorical variables (either nominal or ordinal) as well as for quantitative discrete variables. Simply each level of the variable is associated with the corresponding frequency.
- For a continuous variable, if we associate a frequency to each distinct value of the variable, the number of frequencies will become unduly large, as a continuous variable can assume an infinite number of values within its range of variation. Hence continuous variables are discretized, i.e. recoded in class intervals.

Frequency distribution of a categorical variable (sex)		
SexNumber (absolute frequency)	Percent frequency	
Men	33	26.4%
Women	92	73.6%
Total	125	100%
\square men \square women		
Relative frequency is computed by dividing absolute frequency by the total number of data: $33 / 125=0.264=26.4 \%$		

The categories should be mutually exclusive, i.e. non-overlapping. One statistical unit must be assigned to only one category: for instance a gay/lesbian cannot be assigned to both sexes, a gay is a male and a lesbian is a female.
The classes should be exhaustive, i.e. they must cover the entire range of the data: for instance, transgender and intersex individuals should require an additional class to be classified.

Importance of relative frequency: example

Categorical variable $=$ sex
In 1995 my lessons to Specialization Schools were attended by 16 men, while my lessons to the Medical School by 33 men. If we consider absolute frequency, men were twice as many among medical students than among specializing graduates.

Indeed male sex is much more common among specializing medical graduates than among medical students.

FREQUENCY DISTRIBUTION of TWO QUALITATIVE VARIABLES			
Variable: Eye color	Modality	Frequency	
		Absolute (n)	Relative (\%)
	dark	120	80
	light	30	20
	Total (Σ)	150	100
	Modality	Fre	ency
		Absolute (n)	Relative (\%)
Variable:	dark	110	73.3
Hair colour	light	40	26.7\%
	Total (\sum)	150	100

EXERCISE: Building a $2 * 2$ contingency table
DATA: There are 1000 elderly people, 100 have diabetes mellitus and 300 have hypertension. 70 subjects are affected by both diabetes and hypertension.

	Hypertension	No Hyperten.	
Diabetes	70	30	100
No diabetes	230	670	900
	300	700	1000

$\%$ of hypertension in the diabetic group $=70 / 100=0.70=70 \%$
$\%$ of hypertension in the non-diabetic group $=230 / 900=0.256=25.6 \%$
CONCLUSION: Diabetes and hypertension are highly related diseases.

DATA: There are 1000 elderly people, 100 have diabetes mellitus and 300 have hypertension. 70 subjects are affected by both diabetes and hypertension.			
	Hyp yes	$\begin{array}{r} \text { sion } \\ \text { no } \end{array}$	
yes	70		100
no	230		90
	300	700	1000

Mendel experiment:

Mendel bred together smooth yellow peas (dominant traits) and wrinkled green peas (recessive traits), and further inbred the 1° generation of hybrids.

	Yellow	green	
Smooth	315	108	$\mathbf{4 2 3}$
Wrinkled	101	32	$\mathbf{1 3 3}$
	416	$\mathbf{1 4 0}$	$\mathbf{5 5 6}$

$\%$ of green peas among smooth peas $=108 / 423=0.255=25.5 \%$
$\%$ of green peas among wrinkled peas $=32 / 133=0.241=24.1 \%$

CONCLUSION: The trait "surface characteristic" segregates independently of the trait "color" (Mendel's third law = Principle of independent assortment).

Frequency distribution of a discrete quantitative variable

We want to describe the parity of a group of women, i.e. the number of children each woman has given birth to.

To construct a frequency distribution showing these data, we first list, from the lowest observed value to the highest, all the values that the variable parity can take.

For each parity value, we then enter the number of women who had given birth to that number of children.

Frequency distribution of a quantitative variable (parity)

The table shows the resulting frequency distribution. Notice that we listed all values of parity between the lowest and highest observed, even though there were no cases for some values. Notice also that each column is properly labeled, and that the total is given in the bottom row.

parity	n° of cases	$\%$ frequency	cumulative freq.	cum. $\%$ freq.
0	45	$25,1 \%$	45	$25,1 \%$
1	25	$14,0 \%$	70	$39,1 \%$
2	43	$24,0 \%$	113	$63,1 \%$
3	32	$17,9 \%$	145	$81,0 \%$
4	22	$12,3 \%$	167	$93,3 \%$
5	8	$4,5 \%$	175	$97,8 \%$
6	2	$1,1 \%$	177	$98,9 \%$
7	0	$0,0 \%$	177	$98,9 \%$
8	1	$0,6 \%$	178	$99,4 \%$
9	0	$0,0 \%$	178	$99,4 \%$
10	1	$0,6 \%$	179	$100,0 \%$
total	179	$100,0 \%$		

Metastatic lymph nodes in 921 patients with gastric cancer (graphic representation of the frequency distribution of a discrete quantitative variable - bar diagram)

WEIGHT, HEIGHT and SEX of 1st year MEDICAL students (FRESHERS) at VERONA UNIVERSITY in October 1995

FREQUENCY DISTRIBUTION of HEIGHT

HEIGHT			Valid	Cum
Value	Frequency	Percent	Percent	Percent
150	1	. 8	. 8	. 8
155	2	1.6	1.6	2.4
156	3	2.4	2.4	4.8
158	1	. 8	. 8	5.6
159	2	1.6	1.6	7.2
160	13	10.4	10.4	17.6
161	2	1.6	1.6	19.2
162		3.2	3.2	22.4
163	1	. 8	. 8	23.2
164	4	3.2	3.2	26.4
165	10	8.0	8.0	34.4
166	3	2.4	2.4	36.8
167	11	8.8	8.8	45.6
168	5	4.0	4.0	49.6
169	5	4.0	4.0	53.6
170	12	9.6	9.6	63.2
171	4	3.2	3.2	66.4
172	5	4.0	4.0	70.4
173	4	3.2	3.2	73.6
174	2	1.6	1.6	75.2
175	5	4.0	4.0	79.2
176	3	2.4	2.4	81.6
177	5	4.0	4.0	85.6
178	5	4.0	4.0	89.6
179	1	. 8	. 8	90.4
180	2	1.6	1.6	92.0
181	1	. 8	. 8	92.8
182	3	2.4	2.4	95.2
183	2	1.6	1.6	96.8
184	1	. 8	. 8	97.6
188	1	. 8	. 8	98.4
192	1	. 8	. 8	99.2
193	1	. 8	. 8	100.0
Total	125	100.0	100.0	

CONSTRUCTING a FREQUENCY DISTRIBUTION for a CONTINUOUS QUANTITATIVE VARIABLE

1.Find the smallest and the largest values.	Minimum $=150 \mathrm{~cm}$ Maximum $=193 \mathrm{~cm}$
2. Compute the range, i.e. the difference between the largest and the smallest value	$193-150=43 \mathrm{~cm}$
3. Fix the number of class intervals: between 5 (few statistical units) and 20 (several units)	9 class intervals
4. The classes should, preferably, be of equal width.	
5. Fix the width of class intervals.	$43 / 9=4.78 \mathrm{~cm} \approx 5 \mathrm{~cm}$
6. Construct the class intervals, which must be mutually exclusive and exhaustive	$1^{\text {st }}$ interval: $[150-155)$ $2^{\text {nd }}$ interval: $[155-160)$ $3^{\text {rd }}$ interval: $[160-165)$
7. Count the number of statistical units in each interval.	$1^{\text {st }}$ interval: 1 $2^{\text {nd }}$ interval: 8 $3^{\text {rd }}$ interval: 24

The classes should be mutually exclusive, i.e., nonoverlapping. No two classes should contain the same interval of values of the variable.

The classes should be exhaustive, i.e., they must cover the entire range of the data.

The number of classes and the width of each class should neither be too small nor too large. In other words, there should be relatively fewer classes if there are few statistical units and relatively more classes if there are many.

The classes should, preferably, be of equal width.

```
compute heightCLAS=trunc((height-145)/5).
fre var=heightCLAS.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CLASS} & \multicolumn{2}{|r|}{FREQUENCY} & \multicolumn{2}{|l|}{CUMULATIVE FREQUENCY} \\
\hline & ABSOLUTE & RELATIVE \% & ABSOLUTE & RELATIVE \% \\
\hline 150-154,9 & 1 & \(1 / 125=0,8\) & 1 & \(1 / 125=0,8\) \\
\hline 155-159,9 & 8 & \(8 / 125=6,4\) & \(1+8=9\) & 9/125= 7,2 \\
\hline 160-164,9 & 24 & 24/125=19,2 & \(1+8+24=33\) & 33/125=26,4 \\
\hline 165-169,9 & 34 & 34/125=27,2 & \(1+8+24+34=67\) & 67/125=53,6 \\
\hline 170-174,9 & 27 & 21,6 & 94 & 75,2 \\
\hline 175-179,9 & 19 & 15,2 & 113 & 90,4 \\
\hline 180-184,9 & 9 & 7,2 & 122 & 97,6 \\
\hline 185-189,9 & 1 & 0,8 & 123 & 98,4 \\
\hline 190-194,9 & 2 & 1,6 & 125 & 100,0 \\
\hline Total & 125 & 100,0 & & \\
\hline
\end{tabular}
```

Cumulative frequency $=$ the sum of absolute frequencies of all the classes equal to or less than the considered class.

Height of medical freshers at Verona University in 1995 (graphic representation by line charts)

Height of medical freshers at Verona University in 1995 as a function of gender

Height of medical freshers at Verona University in 1995 as a function of gender

Height of medical freshers at Verona University in 1995 as a function of gender

If the height of every men is increased by $5 \mathbf{~ c m}$

Algorithms to choose the number of intervals / interval width

A) According to H. Sturges (1926) the optimal number of class intervals (C) can be mathematically derived from the number of observations (N):

$$
\mathrm{C}=1+\frac{10}{3} \cdot \log _{10}(\mathrm{~N})
$$

B) According D. Scott (1979) the optimal width (h) of class intervals, which directly determines also the number of class intervals, can be derived from the standard deviation (S) as follows:

$$
h=\frac{3,5 \cdot S}{\sqrt{N}}
$$

DIABETIC MEN in VERONA on the 31.12.1986

N.B. : $100 \%=$ all diabetic men

Muggeo M, Verlato G, ..., de Marco R (1995) The Verona Diabetes Study: a population-based survey on known diabetes mellitus prevalence and 5-year all-cause mortality. Diabetologia, 38: 318-325

Absolute rank = number specifying position in an numerically ordered series.

An ascending order is usually adopted in medical statistics.
If two or more statistical units (individuals) have the same value, they are assigned the average rank of the positions held.

RANK	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
VALUE	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
		2,5	2,5		
RANK	1	2	3	4	5
VALUE	3	4	4	4	5
		3	3	3	

Percentile Rank

Percentile rank of a given score is the proportion of scores which are equal to or lower than that score.

For instance, a student gets a bad mark at school. If this mark is lower than the marks obtained by 90% of his/her schoolmates, parents usually get anxious and nervous.

However, if this mark is lower than the marks obtained by 10% of the other students, parents usually relax a little.

In the first case the percentile rank is 10%, while in the second case is 90%.

EXAMPLE

A schoolboy has a glycaemia of $90 \mathrm{mg} / \mathrm{dl}$.
There are 700 students in his school.
If glycaemia is sorted in ascending order, his absolute rank (position) is 500.

Which is the percentile rank (\%)?
PercentileRank = AbsoluteRank / (n+1)
$500 /(700+1)=500 / 701=0,713=71,3 \%$

Reverse equation:
AbsoluteRank $=(n+1)$ * PercentileRank

COMPUTING the PERCENTILE RANK

Let's consider two subjects whose absolute rank is 50 , respectively in a group of 99 subjects or in a group of 100 subjects.

	$\mathrm{N}=99$	$\mathrm{~N}=100$
Subjects with higher rank	49	50
	50	50
Subjects with lower rank	49	49
Percentile rank = 50/(99+1)=50\%	$\mathbf{5 0 / (1 0 0 + 1) = 4 9 . 5}$	
WRONG \% rank= 50/99=50.5\%	\%	$\mathbf{5 0 / 1 0 0 = 5 0 \%}$
To compute percentile rank, we have to divide by $\mathrm{N}+\mathbf{1}$ not by N !		

Percentile

Percentiles are 99 values of a variable that divide the distribution of the variable in 100 subgroups having equal frequency.
N.B. Quartiles are 3 values that divide a distribution in 4 subgroups having equal frequency:
1° quartile $=25^{\circ}$ percentile 2° quartile $=50^{\circ}$ percentile 3° quartile $=75^{\circ}$ percentile

PERCENTILE RANK = FEATURE of an INDIVIDUAL PERCENTILE = FEATURE of a POPULATION

EXAMPLE:
An individual weighs 100 Kg . His percentile rank is 96%, i.e.
96% of other individuals have an equal or lower weight.
Which is the 96° percentile in the same population? 100 Kg .
An individual with a percentile rank of 96% has a weight equal to the $\mathbf{9 6}^{\text {th }}$ percentile of that population $(100 \mathrm{Kg})$.

Computing the \boldsymbol{k} - $\boldsymbol{t h}$ percentile - $\mathbf{1}$

(Individual data are available)

- First of all, one should find the absolute rank corresponding to the \boldsymbol{k}-th percentile

Absolute rank $=(\mathrm{N}+1) * k / 100$

- Then one should find the value of the observation with that particular rank.

Example (individual data)

Which is the 40° percentile of height in 1° class medical students at Verona University in 1995 ?

1) Which absolute rank corresponds to the $\mathbf{4 0}^{\circ}$ percentile ?

AbsoluteRank $=(\mathrm{N}+1) * \mathrm{k} / \mathbf{1 0 0}=(\mathbf{1 2 5}+1) * \mathbf{4 0 / 1 0 0}=\mathbf{1 2 6} * \mathbf{0 . 4}=50.4$
2) Observations with absolute ranks 50 and 51, both have a height of 167 cm .

$$
X_{40}=167 \mathrm{~cm}
$$

Computing the \boldsymbol{k}-th percentile - 2

(Original data not available, only a frequency table)

- The class interval containing the \boldsymbol{k}-th percentile should be identified, i.e. the class interval where relative cumulative frequency exceeds or equals k percent
- Then a linear interpolation is performed

$$
x_{k}=u_{i-1}+\frac{k-F\left(u_{i-1}\right)}{F\left(u_{i}\right)-F\left(u_{i-1}\right)} * \delta_{i}
$$

$k \quad=$ percentile rank
$\chi_{k} \quad=k$-th percentile of the distribution
$u_{i-1}=$ lower limit of i-th interval
$u_{i} \quad=$ upper limit of i-th interval
It is assumed that values are uniformly
$\mathrm{F}\left(u_{i-1}\right)=$ cumulative frequency of previous interval
$\mathrm{F}\left(u_{i}\right)=$ cumulative frequency of i-th interval
$\delta_{i} \quad=$ width of i-th interval

Example (frequency table)

Which is the 40th percentile of height in 1st class medical students at Verona University in 1995 ?
The 40th percentile belongs to the 4th classe: [165-170) cm

$$
\begin{aligned}
X_{40} & =165+5 * \frac{40 \%-26.4 \%}{53.6 \%-26.4 \%}=165+5 * \frac{13.6 \%}{27.2 \%}= \\
& =165+5 * 0.5=165+2.5=167.5 \mathrm{~cm}
\end{aligned}
$$

Computing \boldsymbol{k}-th percentile -3

(Individual data are not available, only a graphical representation of relative cumulative frequency is available)

- The point corresponding to \boldsymbol{k}-th percentile rank is located on the Y-axis
- An horizontal line is drawn from this point until it crosses the chart line, showing the pattern of relative cumulative frequency
- A vertical line is drawn from the intersection point until it crosses the \underline{X}-axis, reporting the values of the variable under study
- The value of the variable in the latter intersection point corresponds to the \boldsymbol{k}-th percentile

NUMERICAL or GRAPHICAL SUMMARIES of DATA		
Type of variables	Numerical summary	Graphical summary
Categorical nominal or ordinal)	Frequency table	pie bar chart
Quantitative discrete	Frequency table	bar chart
Quantitative continuous	Frequency table	Stem-and leaf plot
	histogram line chart	
box-and- whisker plot		

HEIGHT DISTRIBUTION AMONG 1° CLASS MEDICAL STUDENTS

 BOX-and-WHISKERS PLOT (GRAFICO SCATOLA E BAFFI)

Whisker maximum length $=1.5 *$ interquartile range (box height) sesm

